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ABSTRACT 

The theory of stimulated light scattering from a binary gas 

mixture has been developed.    It considers the coupling of a laser 

wave and a scattered light wave with the collective modes of the 

mixture.    It has been found that in a binary gas mixture in which 

the different types of molecules have a large difference in mass 

and polarizibility,  it is possible to generate stimulated scattering 

from local fluctuations in the concentration. 

The shift in frequency between the laser and backward 

scattered wave has been observed systematically as a function of 

helium concentration from 0 to 90% in mixtures of He and SF, in 

which the partial pressure of SF, was 5 atm. ,  and in mixtures of 

He and Xe in which the partial pressure of Xe was 8 atm.   In both 

cases, for helium concentration less than 60% the frequency shift 

of the backscattered light is characteristic of stimulated Brillouin 

scattering in the mixture.   As the helium concentration increases 

above 60%, the frequency shift decreases and rapidly approaches the 

small values which are characteristic of stimulated concentration 

scattering.    The experimental observations are in good agreement 

with theoretical predictions. 
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CHAPTER   I 

INTRODUCTION 

A.    Spectrum of the Scattered Light 

1.    Introduction 

It is a well known phenomenon v.hat when a beam of light passes 

through a transparent medium,   sonne of the light is scattered.    This 

scattering,   specifically excluding Raman scattering,  is due to the fact 

that the density of the medium is not uniform .    For a macroscopic 

system in thermodynamic equilibrium,   small an plitude fluctuations 

in the density,  and all other thermodynamic parameters which 

characterize the system,  occur.    These zero point or thermal 

fluctuations produce a space and time dependent index of refraction in 

the medium and thereby cause the scattering of light.    The scattered 

light has a frequency spectrum which is characteristic of the time 
2 

dependence of the fluctuations   . 

The basic theory of light scattering from dense media was 
3 

introduced by Einstein  .    He recognized the importance of the 

coherence between waves scattered by neighboring molecules, and 

derived what are essentially the Laue equations for the scattering of 

light.    These equations show that light is scattered by fluctuations 

whose wave vector conserves momentum between the incident and 

scattered photons. 

Einstein did not,  however,  compute the spectrum of the 

scattered light,  since the time dependence of the thermal fluctuations 



was not known.    The earliest information on the time dependence was 
4 

Debye's theory of specific heat  ,  which showed that the thermal 

content of the medium could be regarded as sound waves. 

Following this work,  Brili.uin    calculated the spectrum of 

light scattered from these thermally excited sound waves.    This 

frequency spectrum is determined by energy and momentum 

conservation.    Momentum conservation requires that the scattering 

of light with incident wave vector k    through an angle 6 to a final 

wave vector k_ couples only to spatial fluctuations with wave vector 

k = k. -kg.    Energy conservation requires that the frequency of the 

scattered light is shifted from the incident frequency by an amount 

Au; = kv,, where vs is the sound velocity in the medium.    The frequency 

spectrum of the scattered light consists of two lines shifted 

symmetrically about the laser frequency by an amount Lu-    The down- 

shifted "Stokes" line is the result of the creation of a phonon by the 

incident photon, while the up-shifted "anti-Stokes" line is due to the 

absorption of a phonon by the incident photon.    The shifted lines may 

be viewed as arising from the modulation of the incident light by the 

time dependence (e—      S ) 0f the propagating fluctuations or as a 

Doppler shift of the incident light by periodic density fluctuations 

moving with velocity v- in the direction k.    The lines are broadened 

due to dissipative processes which damp the sound waves  . 

The first observation of the existence of the Brillouin doublets 

was made by E.  Gross   .    Gross,  and subsequent workers,  found that 

in addition to the Brillouin doublets,  the spectrum of the scattered light 



contained a component at the same frequency as the incident light. 

8 This feature was explained by Landau and Placzek   who pointed out 

that the thermal content of the body consists of non-propagating 

density fluctuations in addition to the sound waves.    These thermal 

excitations,  which are governed by the heat diffusion equation,  lead 

to light scattering which is not shifted in frequency but is broadened 

by the thermal dissipative processes which damp out these 

fluctuations.    The resulting central peak in the spectrum is known 

as the Rayleigh line. 

In the binary fluid mixture,  fluctuations in the local concentration 

of one component also occur.    If the two,  component molecules have 

a different polarizibility,  the concentration fluctuation produces a 

fluctuation in the index of refraction.    Thus the concentration 

fluctuations also contribute to the scattered light spactrum.    Since 

the concentration fluctuations are non-propagating, the central 

Rayleigh component in this case will contain the combined effects of 

temperature and concentration fluctuations. 

In general,  the effects of heat conduction and diffusion on the 
9 

width of the Rayleigh component cannot be separated in a simple way  . 

The cross effects between energy transport and diffusion which are 

present in a binary fluid result in a more complicated structure for 

the Rayleigh line.    These cross effects are known in nonequilibrium 

thermodynamics as the Duiour effect (a concentration gradient 

inducing heat flow) and the Soret effect (a temperature pradient 

inducing diffusion flux). 
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The spectrum of the scattered light thus contains detailed 

information on the processes of the transfer of mass,energy,  momen- 

tur^1    temperature gradients etc. ,  over distances which are on the 

order of a wavelength of light.    However due to the small frequency 

shifts and cross sections involved,   the use of spontaneous light 

scattering to study density fluctuations was limited until 1964    ' 

when the laser,  an ideal source for such experiments due to its 

intensity,  monochromaticity and collimation, was introduced, making 

2 12 possible accurate measurements of spectra  ' 

B.      Light Scattering Formalism 

Information about the correlations in the medium are obtained 

directly from the spontaneous scattering spectrum.    Komarov and 

13 14 Fisher     have shown, by adapting Van Hove's     neutron scattering 

results to light scattering,  that the intensity of the scattered light 

is given by 

-♦ -* u«; 4.       ^n 2 -♦ 
I(R,k,w)   =   (~)     —^   sin   *S(k,u)    • (1.1) 

c0      (47rR) 

The light scattered at the origin is observed at R.    The frequency of 

the scattered light is   u«, u is the shift in frequency and k   is the 

change in wave vector of the light upon scattering, and $ is the angle 

between the electric vector of the incident intensity I0 and R      S(k, g) 

is the dynamical structure factor given by 

S(k,w)   =   2 Re   < Öc (ir,iw) öe(-t)   > 



where 
00 

öcÖMw)   =    jdt  Jd3röe(r,t)e"ikr"iut. 
0 

The Fourier-Laplace transform of the correlation function of the 

dielectric constant can be expressed in terms of similar correlation 

functions of any complete set of dynamical variables Q. which 

describe the system 

< e{k,iw) e(-k)>   =   §  |^   |§-  ^.(iT,^) Q. (-k) > 
«I 

The choice of the thermodynamic variables is not important in the 

sence that the final result • -ill be the same regardless of which 

variables are used in the formulation.    However, the form of the 

equations and comparison with experimental results is simplified by 

a choice of the  "proper" set of variables.    In this work,  the state 

variables were chosen to be pressure P, temperature T, and 

concentration of the lighter molecule c. 

The calculation of the correlation functions       <Q(k, i( ) Q(-k)> 

can be approached from a macroscopic or microscopic point of view. 

The macroscopic approach can be applied if the system remains in 

thermodynamic equilibrium.    This approach,  suggested by Landau 
g 

and Placzek , is as follows.    The space-time response of the system 

to a deviation from the equilibrium state is calculated using the 

linearized h^drodynamic equations to determine the modes by which 

the system returns to equilibrium as well as the relative amplitudes 

for each mode.    Thermodynamic fluctuation theory provides the initial 
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values for the correlation functions. 

The resulting "hydrodynamic " spectrum is characteristic of 

the dominant collective modes of the system and has been described 

in the preceding section.    This spectrum is related to many of the 

thermodynamic derivatives and transport coefficients and thus leads 

to a measurement of them.    The hydrodynamic equations are valid 

only in the regime in which local thermodynamic equilibrium is 

maintained by interparticle collisions.    This is the long wavelength, 

low frequency limit in which the particle undergoes many collisions 
i i 

over the characteristic length   j-   and time   —   which the thermodynamic 
K (j 

fluctuations are probed.    The conditions which must be satisfied are 

I « ■r   and T    « —   where I is the particle mean free path and r     is 
iC C (jj c 

the time between collisions.    If these conditions are not satisfied, as 

in a dilute gas,  a more generalized, microscopic approach must be 

taken.    The basis for this microscopic approach is the Boltzmann 

equation with the appropriate boundary conditions.    In the low frequency, 

long wavelength limit,  the macroscopic conservation laws (hydrodynamic 

equations) may be obtained from the Boltzmann equation by the Chapman- 

15 Enskog     procedure and the transport coefficients are obtained in terms 

of molecular parameters. 

The' macroscopic approach has been discussed in greater detail 

in the study of spontaneous scattering from the binary mixture by 
a 

Mountain and Deutch    and recent experimental results on a binary 

gas mixture by Gornall et. al.      are in excellent agreement with 

theoretical calculations. 



The important point is that the thermal fluctuations in the 

medium cause scattering of light by modulating the index of 

refraction throngh the various coupling terms   —k .    The spectrum 

of the spontaneous light scattering is shown in Fig.   (1. 1).    The 

central Rayleigh peak consists of the contribution from thermal 

fluctuations which results in light scattering through the coupling 

constant   ("TS.)   where   e  is the local dielectric constant of the 

medium,  and the contribution from concentration fluctuations through 

the coupling constant   (T—)•    The shifted Brillouin peaks are due to 

de the pressure fluctuations with coupling constant   (-äp). 

In addition to the low-lying excitations of the medium which 

give rise to the Rayleigh-Brillouin triplet (thermal and concentration 

diffusion and the acoustic phonon mode) there are many other types 

of excitations which contribute to the spectrum of the scattered light. 

Examples are rotational motions or librations of anisotropic 

molecules (inelastic Rayleigh wing scattering) and vibrational 

excitations or optical phonon modes (Raman scattering).    All of these 

effects have been studied with renewed interest and mich greater 
12 

precision during the past decade 

C.    Stimulated Light Scattering 

If the incident light wave has a very large amplitude and the 

coupling between the light and the scattering medium is strong, the 

amplitude of the scattered wave will also become large.    In this 

regime it is no longer only the zero point or thermal fluctuations of 

the medium which are involved in the scattering process.    Instead the 
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Fig.   1. 1    Components of the Spontaneous Light Scattering Spectrum 



scattered wave interferes with the incident wave and produces a 

force on the medium through the dependence of the dielectric 

constant on the material coordinate.    This force drives a coherent 

oscillation of the material coordinate.    The enhanced motion of Q 

then causes enhanced scattering through the dependence of the 

dielectric constant on the material coordinate.    The enhanced 

scattering reacts back even more strongly on the coordinate Q.    This 

mutual reinforcement of scattering and oscillation of the material 

coordinate leads to an exponential growth of the waves proportional 

to the square of the coupling constant   ("öQ).    This process is called 

"stimulated" scattering. 

In this picture of stimulated scattering,  it is necessary to 

describe the amplification and attenuation of the fields through their 

mutual coupling.    This description requires knowledge of the 

relative phases among the waves and thus the problem may most 

conveniently be treated by a classical, coupled wave approach. 

In principle there are stimulated scattering processes 
17 associated with each spontaneous process    .    The first stimulated 

light scattering process to be observed was stimulated Raman 

18 scattering    , and since then many other stimulated processes have 

17 19 been observed, and studied in great detail    * 

The coupled wave appraoch in nonlinear optics was introduced 

by Arristrong et. al.      and has since been used by many authors    *    * 

to describe various types of stimulated scattering.    This is the approach 

which will be taken in this work to describe stimulated scattering from 
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local fluctuations in concentration in a binary gas mixture. 

In the study of stimulated scattering,  the important point is to 

determine how the electromagnetic fields couple to the medium in 

such a way that they can drive      coherent fluctuations of the 

coordinates Q.    Obviously the way to do this is to find the interaction 

energy between the medium and the fields in terms of Q.     Then, 

differentiation with respect to Q gives the  "force" (i.e.   the form of 

the coupling term) on the coordinate due to the presence of the 

electromagnetic fields.    This force acts on the medium in a manner 

which reduces the dielectric energy. 

In the coupled wave approach,  the coupling of the electromagnetic 

fields with the medium is given by an interaction Hamiltonian of the 

22 general form 

Hi„t = <l&QXEs f1-2' 

where   ("Tp)  is the coupling constant,  Q is the amplitude of a normal 

mode coordinate of the material excitation,  and ET   and Eg are field 

amplitudes of the incident and scattered electromagnetic waves.    This 

form of the interaction energy determines the complete solution of the 

problem. 

The solution for the scattered wave amplitude is indicated 

below.    This discussion is presented in order to introduce the 

terminology used in treating stimulated scattering processes and to 

demonstrate the general structure of the solution.    A more physical 

interpretation will then be given in order to make clear how the fields 
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and the medium interact. 

The equation of motion for the material coordinate Q may be 

obtained in general from the classical Lagrangian density.    The 

exact form of the equation of motion depends on the response of the 

particular material coordinate Q.    However there will always be a 

coupling term of the form 

8H.   . a —mi ^ (Is.) E   E n ,, 
9Q W ^L ^S <1-3) 

in the equation of motion for the coordinate Q.    Thus the dependence 

of Q on the fields,  which is obtained by taking a Fourier transform 

and equating all terms at the same frequency,  is given by 

Q   ~   ^ EL ES a. 4) 

The dynamical equation for the scattered wave amplitude (Maxwell's 

equation) can be obtained rigorously from the Lagrangian density. 

However,  the same result is obtained by observing that the form of 

the interaction energy implies the existence of a nonlinear polarization 

of the medium at the Stokes frequency which is given by 

NLS . 
P(Ws)   =   (||)Q   EL (1.5) 

With this polarization,direct use can be made of Maxwell's equation to 

obtain the behavior of the Stokes wave amplitude. The result is given 

by 
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V Es -j   Es   -    -   -j   -^      P 

0     9t co    at 

2 
(1.6) 

0 

where   c«    is the linear dielectric constant.    If the relaxation times 

for the normal modes of the medium are short compared to the laser 

pulse duration,  a steady state solution for the scattered wave may be 

found of the form 

Es(zt)   =   Es(z) e^V"1^ . 

Substituting this solution into Equation (1.6) and using the dependence 

of the coordinate Q on the fields given by Equation (1.4) gives the 

result 

^ ~ ^ lEJ2 Es <1-7' 

The Stokes wave thus grows exponentially in space as 

-s<2' = E
Soe8|EL|22     • 

The stimulated wave builds up from the noise input at the Stokes 

frequency Ec   .    The gain coefficient g depends on the square of the 

coupling constant   (-TQ) for the coordinate Q,  and on the incident laser 

intensity JE. (   .    The stimulated scattering process depends only on 

the existence of a coordinate dependent susceptibility of the medium. 
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This approach is applied in Chapter II   to determine the gain 

coefficients for scattering from the normal modes of the fluid 

mixture.    One would like to understand now,  on a simplified basis, 

how the electromagnetic fields interact with the binary gas mixture. 

If a static electromagnetic field with some spatial variation in 

intensity is applied to the mixture,  the density will increase in the 

regions of greater field intensity.    This behavior is due simply to 

the reduction of dielectric potential energy which is achieved by an 

increase in the density.    The dielectric energy is given by 

W TNalET 

where N is the number of molecules per unit volume and a is the 

molecular polarizibility.    This result is the well known electro- 

strictive effect.    In a gas mixture,  the dielectric potential energy is 

also decreased by an increase in the concentratiori of the more 

polarizible molecules in the regions of greater field intensity. 

This response of the medium leads to stimulated Brillouin and 

concentration scattering when the static field is replaced by the sum 

of the incident light wave with frequency   u.     and  scattered wave with 

frequency Uo*    These stimulated processes are very different because, 

although the responses of the density and concentration to a static field 

are the same,  the characteristics of the dynamic response are quite 

different. 

The time required for the density to change in response to the 

influence of the fields is on order of the inverse sound wave frequency 
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-9 
(~10       sec).    The concentration can change in a time on the order of 

the diffusion relaxation time which,  for the gas mixtures under 

~9 investigation,  is also about 10       sec.    These response times are 

very long compared to the period of the light wave (<""- 10        sec). 

Thus when the incident and scattered wave propagate through the 

medium,  it responds only to slow variations of the total field intensity. 

The slow variation of the total intensity,  which is produced by the 

interference between the incident and scattered waves,  oscillates 

with frequency   u = ^   'Ue*    Thus this field is referred to as the 

difference frequency field. 

When the incident and scattered waves propagate through the 

medium,  the density and concentration are modulated by the difference 

frequency field for the same reason as in the static case, that is to 

reduce the dielectric energy.    Thus the slow variation of the total 

field drives coherent periodic variations in the density and 

concentration which have the same period in space and time,  but not 

the same phase,  as the difference frequency field. 

The driven density variation,  given by Equation (1. 4) with Q 

replaced by p ,  is a sound wave which propagates with the sound 

velocity Vj, through the medium.    The sound wave modulates the index 

of refraction through the coupling term   (-r^) which leads to scattering 

with a Doppler shift in frequency given by kvs,  where k is the wave 

vector of the sound wave.    The damping of the sound wave causes the 

material polarization wave Equation (1. 5) to lag in phase behind the 

Stokes wave.    The part of the polarization which is out of phase with 
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the Stokes field by   tt/Z   does work on the field.    The work done on the 

23 field leads to an increase in energy or gain,  in the Stokes wave 

The result is stimulated Brillouin scattering. 

Stimulated concentration scattering is analogous to the situation 

described above.    The slow variation of the total field drives the 

variation in concentration.    This variation modulates the index of 

refraction through the coupling term   (T*)   which causes scattering. 

The concentration fluctuations however do not propagate,  but instead 

relax through diffusion.    In this case,  it is the diffusive response which 

causes the polarization to lag behind the Stokes field.    The diffusion 

relaxation time is    5    where D is the diffusion constant and k is the 
Dk^ 

inverse wavelength of the time average field.    It is to be expected that 

the gain for the Stokes wave will be maximum for a frequency shift of 

2 
w = Dk .    This is reasonable,   since for u = 0 the polarization is in 

phase with the Stokes field so the gain is zero and since the concentration 
2 

fluctuation cannot respond to frequencies much larger than Dk   the 

2 
gain is also zero for u) » Dk  . 

Stimulated light scattering from temperature variations in the 

mixture may be described in exactly the same language as the 

concentration scattering.    In this case the coupling term is  {-r^   and 
24 

the temperature variation is induced by the electrocaloric effect 

In analogy with the concentration scattering, the frequency shift of the 
2 

scattered wave should be   \k    where x is the thermal conductivity of 

the medium. 

One of the main features of stimulated scattering is that 

generally the scattering from only one mode of the system will be 
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stimulated.    The reason for this is that the first stimulated wave 

grows so rapidly that it quickly depletes the laser.    In a system with 

several modes one would calculate the gain for scattering from each 

mode independently.    Stimulated scattering would then be observed 

from whichever mode presented the largest gain. 

In nearly all types of binary fluid mixtures the Brillouin gain 

dominates the concentration gain.    The object then of calculating the 

gain coefficients for the various modes is to determine the dependence 

of the gain on the physical parameters so that a mixture can be found 

in which it is possible to observe concentration scattering. 

In a complicated system,   such as the binary gas mixture, 

where there may be strong interaction between the various modes, 

one must determine the gain as a function of frequency shift for the 

complete coupled system in order to obtain good agreement with 

experiment results.    The frequency shift of the stimulated wave is given 

by the value of the shift at which the gain is largest. 

D.     Summary 

The object of this work was to attempt to observe stimulated 

light scattering from concentration fluctuations in the binary gas 

mixture.    The theory of the response of the binary mixture and the 

wöy in which it couples to electromagnetic fields was considered in 

detail.    The purpose of this investigation was to determine the dependence 

of the gain coefficient on various physical parameters so that an 

appropriate mixture could be chosen to investigate experimentally. 

The results of the theoretical study are presented in Chapter II.    It 
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was found that a mixture of gases at relatively low pressure in which 

the two component molecules have a large difference in mass and in 

polarizibility is favorable for the observation of concentration 

scattering. 

The main experimental difficulties were to produce a laser 

pulse of sufficiently large intensity that the threshold for stimulated 

scattering could be reached (^ 150    r) and yet maintain a narrow 
, cm 

linewidth ('"*- . 005 cm    ) so that the small frequency shift of the 

stimulated wave could be observed.    The experimental techniques 

are discussed in Chapter III. 

The frequency shift of the stimulated wave has been observed 

as a function of concentration in two gas mixtures He-SF, and He-Xe. 

In order to compare the experimental results w^th the predictions of 

the theory,  it was necessary to calculate the gain coefficient as a 

function of frequency shift.    This calculation required use of a 

computer.    The gas transport coefficients were calculated from 

molecular parameters and the effects of the non ideal behavior of the 

gases were included.    The results, presented in Chapter IV,  show 

good agreement between theory and experiment. 
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CHAPTER   II 

THEORY   OF   STIMULATED   CONCENTRATION   SCATTERING 

A. Introduction 

In this chapter the analysis of stimulated light scattering in a 

binary gas mixture is developed following,  in general,  the analysis 

given by Bloembergen eJj^äL      The dynamical equations which 

characterize the mixture are presented.    The collective modes of 

the mixture and their mutual coupling which are described by the 

hydrodynamic equations are discussed in detail.    The manner in 

which the electromagnetic field couples to the gas mixture is 

described.    Finally,  the gains for the various stimulated scattering 

processes are calculated and it is shown that gas mixtures at 

relatively iow pressures vith a large difference in mass and 

polarizibility of the two component molecules are favorable for the 

observation of stimulated concentration scattering. 

B. Fundamental Equations of Fluid Dynamics 

1.    Ideal Fluid 

The mathematical description of the state of a homogeneous, 

moving fluid is determined by means of functions which give the 

distribution of the fluid velocity   v = v (x, y, z, t) and any of two thermo- 

dynamic quantities which characterize the fluid,  such as the pressure 

P(x, y, z, t) and density   p(x, y, z, t).    It is well known that all of the 

thermodynamic quantities are determined by the values of any two of 

them and the equation of state.    Thus the state of the fluid is completely 
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determined by five quantities;    the three components of velocity and 

the density and pressure. 

All of these quantities are in general functions of the coordinates 

x. y, z and the time t.    These coordinates refer to a point fixed in 

space and not to the particles in the fluid.    The fundamental equations 

which describe the fluid behavior arise from simple expressions of 

2 
basic conservation laws.    These equations are well known    and will 

only be briefly reviewed. 

The first of the fundamental equations of hydrodynamics 

expresses conservation of matter and is 

|ß   +   div (p7)   -   0 (2. 1) 

where   p is the fluid density and   v the velocity.    This result is the 

well known equation of continuity.    The second fundamental equation 

of fluid dynamics is Newton's Second Law applied to a volume element 

of the fluid.    The result is 

|f  +   (v- grad)v   =   -  ^ gradP (2.2) 

where P is the pressure.    This result is Euler's equation.    In deriving 

this equation,  all processes of energy dissipation which may occur in 

a moving fluid due to internal friction (viscosity) in the fluid or heat 

exchange between different parts of the fluid are ignored.    This 

equation then is valid only for an ideal fluid in which viscosity and 

thermal conductivity are not important.    Since there is no heat 

exchange in an ideal fluid,  its motion is adiabatic.    This result leads 
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to the final (adiabatic) equation 

ds 9s -• , . /-,   -» 
dF  "   aF   +   V  ' grads   =   0 (2-3) 

where   s   is the entropy per unit mass. 

A complete set of equations which describe the dynamics of an 

ideal fluid then are Euler's equations,  the equation of continuity,  and 

the adiabatic equation.    In order to describe the fluid dynamics for 

the experimental situation,  the effects of viscosity,  thermal 

conductivity and diffusion must be included.    Before proceeding with 

this program it is useful to consider an expression for the energy 

flux in an ideal fluid.    The energy of the fluid per unit volume is 

^pv2+pe (2.4) 

where   r is the internal energy per unit mass.    Using the equation of 

continuity and Euler's equation it can be easily shown that 

■^ (^ p v2 + p e)   =   - div [p v («I v2 + w)] (2. 5) 

where  w is the enthalpy per unit mass (w = e + P/p).    This equation is 

a simple statement of energy conservation. 

2.    Fluids with Viscosity and Thermal Conductivity 

The energy dissipation which occurs during the motion of a 

non-ideal fluid is a result of the thermodynamic irreversibility of the 

motion.    This irreversibility always occurs to some extent and is due 

to internal friction (viscosity) and thermal conduction.    Euler's 
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equation can be written in the form 

k 

^ik   =   P6ik + ^ViVk 

where   TT-,    is the momentum flux density tensor:    i.e.    IT.,   is the  i 
ik ' ' ik 

component of the momentum density flowing per unit time through a 

unit area perpendicular to the   x,    axis.    This momentum flux 

represents a completely reversible transfer of momentum,  due simply 

to the mechanical transport of fluid particles and to the pressure 

forces acting in the fluid.    The viscosity is due to another,  irreversible 

transfer of momentum from points where the velocity is large to 

those where it is small.    The equation of motion for a viscous fluid 

may be obtained by adding to the "ideal" momentum flux a term "0,-k 

which gives the irreversible "viscous" transfer of momentum in the 

fluid. 

*ik   -^ik + P^k-^ik      • (2-7) 

The fact that internal friction can occur only when there is relative 

motion between various parts of the fluid requires that o-'     have the 

general form 

8v. 8v. 7 8v 9v 

ik ' ^x, ax. 3     ik   8x/      v    ik   ax- v 

k i £ £ 

where the constants n,   ? are the coefficients of shear and bulk viscosity, 

respectively, and are functions of pressure and temperature.    In most 
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cases however the coefficients of viscosity do not change appreciably 

in the fluid and may be regarded as constants.    The equation of 

motion in a viscous fluid then becomes 

pf|f+(v-  grad) v|   =   - gradP + p V2v + (r+^n) grad div^ 

(2.9) 

This result is    called the Navier-Stokes equation,  and it replaces 

Euler's equation in a viscous fluid. 

In a viscous fluid the equation of conservation of entropy is not 

valid since irreversible processes of energy dissipation occur.    This 

equation must therefore be replaced by a more general result.    In the 

ideal fluid the law of conservation of energy is given by equation (2. 5) 

g7(^pv2+pe)   =   - div[p7(iv2 +w)] (2.10) 

In a viscous fluid,  energy conservation still holds,  of course:   the 

change per unit time in the total energy of the fluid in any volume must 

still be equal to the total flux of energy through the surface bounding 

that volume.    However,  the energy flux density now has a different 
1 7 

form.    In addition to the flux  pv^ v   +w) due to the simple transfer 

of mass by motion of the fluid, there is a flux due to the process of 

internal friction.    This flux is given by the vector   v tr'.    Also if the 

temperature of the fluid is not uniform there will be a transfer of 

energy by thermal conduction.    This process is a direct molecular 

transfer of energy from points where the temperature is high to 

those where it is low.    It does not involve a macroscopic motion, and 

occurs even in a fluid at rest. 
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The heat flux density q is then related to temperature variations 

throughout the fluid.    If the temperature variations are small,  q 

may be expanded as power series in the temperature gradient and 

only the first term in the expansion retained. 

q   =   - \ grad T 

The thermal conductivity X is in general a function of temperature and 

pressure. 

The law of energy conservation in a fluid which has viscosity 

and thermal conduction is then given by 

^ (^pv2 + pe)   =   - div [p7^v2 + w) - v- &' - \ grad T]      (Z. 11) 

This equation along with the equation of continuity and the Navier- 

Stokes equation form a complete set of equations for the viscous, 

homogeneous fluid. 

3.    Binary Fluid Mixture 

Up to this point in the discussion, it has been assumed that the 

fluid is completely homogeneous.    In this work however, the physical 

system is a mixture of two gases.    To describe this system the 

equations of fluid dynamics must be modified. 

Consider a mixture of two fluids containing N. molecules of 

mass m. and N2 molecules of mass m, per unit volume.    The 

chemical potentials of the two species are \i. and tx,-    The differential 

free energy may then be expressed as 
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dF = - sdT - PdV + Hjd^ + ^2dN2 (2.12) 

The mass density is 

p = N1m1 + N2m2 = NKl-c') m   + clm2] (2.13) 

where N is the total number of particles per unit volume and c' is 

the relative nunr.ber concentration of the second species,  i.e. 

N- '2 
N (2.14) 

It is related to the relative mass concentration c by 

N2m2 m.     , 

c'   =   c[c + (l-c)  —^l'1 L '   m. J 

(2.15) 

and 

a ail m.ni^ 

[m1c + (l-c)m2J 
mlm2 

The distribution of concentration changes in time in two ways. 

First, when there is ma&a^03ccspi«»»vöt4tm'üf the fluid, any small 

portion of it moves as a whole without changing composition.    This 

results in a purely mechanical mixing of the fluid.    If thermal 

conduction and internal friction are ignored, this change in concentration 
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is a thermodynamically reversible process and does not result in 

energy dissipation.    Second,  a change in composition can occur by 

the molecular transfer of the components from one region in the 

fluid to another.    This process is diffusion which is irreversible and, 

like viscosity and thermal conduction,   is one of the sources of 

energy dissipation in a fluid mixture. 

In a fluid mixture,  the equation of continuity still holds 

|fi   +   div(pv)   =   0 (2.17) 

Strictly speaking the concept of velocity must be redefined for a 

mixture.    As written in Equation (2. 17),  the velocity is defined as the 

total momentum per unit mass of the fluid.    The Navier-Stokes 

equation (2. 9) is also unchanged for a fluid mixture. 

It was shown earlier that a complete set of equations for the fluid 

dynamics of a single component fluid are the continuity equation, the 

Navier-Stokes equation and the energy conservation equation.    For 

the binary fluid mixture,  one additional equation is required.    This 

equation is obtained from the fact that,  in addition to conservation ol 

total mass, the number (or mass) of molecules of the individual 

species must also be conserved.    In the absence of diffusion 

^   =   0 
dt 

or 

|f   +   (v •  grad)c   =   0 (2.18) 
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Combining with Equation (2. 17) gives the result 

— (pc) +div (pcv)   =   0 (2.19) 

When diffusion occurs, there is another contribution to the flux. 

Let   i   be the density of the diffusion flux,  i.e.  the amount of one 

component transported by diffusion through a unit area in unit time. 

This leads to the equation of continuity for one component 

p (|f   +   v • grad c)   =   -divi (2.20) 

The final equation for a fluid mixture is again the equation of 

conservation of energy Equation (2.11) 

■J^pv    +pe)   =   -divLpvCgv   + w) - v • g' + q] 

It is convenient to put this equation in another form. 

Direct evaluation of the left hand side of Equation (2.11) gives 

at^pv +pc)*2v   8r + Pv-dF+P8t+cät 

Using the equation of continuity for   -r^  and the Navier-Stokes equation 

8v for   —   gives the result at 

312 12 (* ■# 12-* _ 
■j£ (2 P v   + c)   =   " 2 v   div (p v) - p v • grad j v    - v • grad P 

+ V. ^ + p|f - cdiv(pv)     . (2.21) 
k 
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For a mixture of two fluids, the internal energy is given by 

de   =   Tds - PdV + iMn   + HS«111? 

where n, ,  n? are the numbers of particles of the two species per unit 

mass of the mixture.    The numbers n. ,  n? satisfy thr relation 

^m. + i^m, = 1.    Using the concentration   c = n^m^ gives 

^2 ^1 
de   =   Tds - PdV +   (—-   -   —) dc 

m2        ml 

which can also be written as 

de   =   Tds + P/p    dp + jjidc 

^2       ^1 
where   u =   — is the chemical potential per unit mass of the m2     m1 

mixture.    This relation may be used to calculate   -^ and further, 

grad P may be obtained from the differential enthalpy per unit mass 

dw   =   Tds   +  - dP + Mc 
P 

Also 
aer' 8v. 

v.   —    =   div v •   er - cr'.,      -— i    9x, « ik     Bx, 

After adding and subtracting div q , the result is obtained 
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9/1        2  ,       . ,.    r   "* «1    2        .     •♦ -♦, ^ (j P v    + p e) = - div [p v (j v    + w) - v • (jr1 + q] 

(2.22) 

as av- + P T (gj- + v • grad s) - o-'^ — + div q - |JL div i 

Comparing this result with the equation of energy conservation in 

(2. 21) gives the result: 

a av- 
p T (If + v • grad s) = cr'     j^ - div (q - M) - i grad fx (2. 23) 

k 

This is the general equation of heat transfer for a binary fluid 

ds mixture.    The left hand side is simply   pT—   which is the quantity of 

heat gained per unit volume per unit time.    The first term on the 

right hand side is the energy dissipated into heat by viscosity.    The 

remaining terms are the heat conducted into the volume concerned. 

The complete set of equations of fluid mechanics for a mixture 

has now been determined and consists of the equation of continuity 

(2. 17),  and continuity for one component (2. 20), the Navier-Stokes 

equation (2. 9) and the general heat transfer equation (2. 23).    These 

equations,  however, are not determinate    until the fluxes   i and q are 

replaced by expressions in terms of the gradients of concentration and 

temperature.    If the gradients are small, i and q can be written in the 

form 
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i   =   - a grad ji - ß grad T 
(2.24) 

<■»■•♦_ 

q - jii   =   0 grad |i. - Y grad T 

The symmetry principle for kinetic coefficients requires 

Ö = PT, 

and,   if grad [i is eliminated from the   ixpression for the heat flux,  the 

result is obtained that 

i   =   - a grad Hi - ß grad T 

q   =   (Hl+£I)t- \ grad T 

where 

X = Y.^I 

is the thermal conductivity. 

The chemical potential \i. may be expanded as a function of P, T, c 

grad ^ = (f )p) T grad c + (||)c> p grad T + (^ T grad P   . 

The Gibbs free energy per unit mass is given by 

d* = - sdT + VdP + Kdc (2.25) 

from which it can easily be shown that 

l8P'c,T        aP8c        ^ac'P, T 

The coefficients of diffusion,  thermal diffusion and barodiffusion are 
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introduced by the following relations 

D   = .2. Ä pvac'T,p 

pkT^  =   a   (|^)c>p + P (2.26) 

Using these definitions gives the result 

k k 
i   =   - pD [grad c +-=£  grad T +ri?   grad P] 

(2.27) 

Ä_       -TM 
*   -   [kT©P,T-T^P,c + ^i-X8radT- 

The discussion which follows will apply only to fluid mixtures 

which satisfy the conditions:   1) The concentration and temperature 

vary slowly so that the coefficients in Equation (2;. 27) may be 

considered as constant;    although they are in general functions of 

c, T.    2) There is no macroscopic motion of the fluid except that which 

may be caused by temperature or concentration gradients.    The 

velocity of this motion is proportional to the gradients so the terms in 

(2. 20) and (2. 23) which contain the velocity are of second order and 

may be ignored.    The term    - i grad M.   in (2. 23) is also of second 

order.  In this case the equation of continuity for one component and 

the heat transfer equation become 
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p^+divT =   0 

pT |^ + div (q - Hit)    =    0. 

Substituting for   i and q   from Equation (2. 27) and transforming the 

derivative   -rr  as follows 

at   "  ^ax'cp at      ^9C'T,P at    lap'T,c  at 

_P  il      (9li\ 9£   +   /9s^ aF 
T   at     ^aT;p,c at      ^ap'x, c  at 

gives the result 

ax   kT ,§£.        ac .   T   ,as.        ap        _2_        ._ ... 
aT"^; (#P,T  ar+^ ^^c  aT =  xv T        (2.28) 

where 

X 

and 

X   "   PCp 

|£  =   D[V2C + ^   JT+^   ^pj (2.29) 

The complete set of equations for a binary fluid mixture have now been 

obtained in their final form from the basic laws of conservation of 

mass, momentum, energy and mass of one component.    These results 

are summarized here: 

(i)   Continuity equation (conservation of mass) 
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■^   +   div (pv)   =   0 (2.17) 

(ii)   Navier-Stokes equation (conservation of momentum) 

|f   +   v-gradv   -   - - gradP+-2 y4 v dt ^ ' p   e' f 

(2.9) 

+ ^ (3 H + f) grad div 7 

(iii)   Thermal diffusion equation (conservation of energy) 

BT   kT .8^. ac .   T ,as.        aP        ^^     /7 -,„. 
aT   ^(#P,T  aT+^^T^  aT  = XV^T     (2.28) 

(iv)   Concentration diffusion equation (conservation of particle 

number of individual species) 

|f-   =   D[72c +^ ^Tf  ^ V2P] (2.29) 

In this macroscopic thermodynamic approach the transport 

coefficients are regarded as constants, to be obtained experimentally, 

which describe the properties of a continuous medium.    In a micro- 

scopic approach, the macroscopic conservation laws are derived from 

the Boltzman equation according to the Chapman-Enskog procedure. 

The transport coefficients are then obtained in terms of the molecular 

parameters.    This procedure will be discussed in greater detail in 

Chapter IV. 

For very dilute gases,  the hydrodynamic equations are no longer 

valid because the change in the dynamical variables over the mean free 
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path length becomes large.    The dimensionless constant which is 

characteristic of the transition from the hydrodynamic to the kinetic 

regime may be written in the form 

1 2 
y   =   (877)2 N   -2-   =   —^ (2.30) 3/2.- 

77  '   I 

where X is the wavelength of periodic variations and   I   =    *•     is 
^277 Nor 

the mean free path.    For   y > 3   the hydrodynamic equations are valid. 

The values of the parameter y for the various gases used are given in 

Chapter IV. 

C.      Collective Modes in a Binary Mixture   -   Their Damping and 

Mutual Coupling. 

1. Introduction 

Before proceeding to include the effects of the electromagnetic 

fields into the basic hydrodynamic equations for the binary fluid 

mixture,  let us examine the collective modes (sound wave,  concen- 

tration and thermal diffusion) described by these equations and the 

coupling between them.    Of course the collective modes and all the 

effects of coupling may be immediately obtained from the general 

dispersion relation,  and this is done later in connection with the gain 

calculation.    However,  this dispersion relation is quite complicated 

so a better physical understanding of the system may be obtained by 

considering the collective modes and their coupling individually. 

2. Concentration and Thermal Diffusion Modes and Their Coupling 

The concentration diffusion mode is defined by the equation 
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|f   ^   D^'c   > (2.31) 

which represents a non-propagating wave with a damping constant 
_ Z 
F = i u = D k   .    The thermal diffusion mode is given by an equation 

which is identical in form to the concentration equation. 

If   =   X V2T     . (2.32) 

This equation again represents a non-propagating mode with damping 

constant   iu   =   X^   • 

The coupling between the concentration and thermal diffusion 

modes is described by the equations 

il.ilA 9£   =   xV2T at    cp ^ac'PjT at      * v ^ 

f   =   D[V2c+^oV
2T] 

(2.33) 

Taking the Fourier transform of these equations leads to the dispersion 

relation 

(iu))2 - (»k2 + xk2) iu + xDk4   =   0 

where 

k 2 

a- Dt1+Tk «I^'P.TJ ■ OP 

The roots of the dispersion equation are 
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iü   =  j (a!k2+ xk2)   ± j [OkZ + xk2)2 - 4xDk4]2 (2. 34) 

These roots give the damping constants for the coupled concentration 

and thermal diffusion modes.    Of course,  in the limit of   kT - 0   when 

there is no coupling,  these results reduce to the original results for 

the uncoupled modes 

2 2 
iw   =   Dk ,     xk for kT -  0 

A simple expression for the effect of the thermal diffusion mode on 

the concentration mode can be obtained in the limit of   \<iLD.    Then 

the concentration damping constant is given by 

,    2 

iu Dk 1 + (it) 
T0Cp    ^c'P,T (2.36) 

The term 
(TP 

ä i s of the order of   10      for the gas mixtures 

used in this experiment and thus is negligible.    In liquids,  Cp becomes 

larger and   (^ )-p T   smaller so the additional term is even smaller. 

The result is that,  in this limit,  coupling between the thermal and 

concentration modes is negligible.    In the linear response to an 

external field,  each mode will exhibit a separate Lorentzian line 

shape.      This result could also have been easily obtained from the 

coupled equations (2. 33) for then,   since   x   is small. 

9T I , 9JJU 9c 
at       Cp vat'p,T at 
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which,  after taking the Fourier transform,   leads directly to the 

result given in Equation (2. 35). 

The effect of the concentration mode on the thermal diffusion 

in the limit   D « x   can t»6 obtained in an analogous fashion.    The 

thermal damping constant is then given by 

Z     Z 
2        Dk kT       - 

iu = xk +"V7 (^)p'T (2,36) 

The additional damping introduced by the coupling is again negligible 

due to the small value of k_. 

In general,   for the gas mixtures used in this experiment,  in 

the region of concentrations in which the concentration and thermal 

diffusion modes are important,  the diffusion coefficient and the 

thermal diffusion coefficient are approximately equal so the effects of 

the coupling must be determined from the complete dispersion 

relation Equation {Z. 34). 

3.    The Sound Wave Mode 

If the sound wave amplitude is small,  the pressure and density 

may be written in the form 

P   =   P^^ 

P =  Po +Pi 

where P0 and p. are the constant equilibrium pressure and density 

and P, and p   are the variations in the sound wave (P^ « P- , p. « p«). 
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The equation of continuity (2. 17) and the Navier-Stokes equation (2. 9) 

may be linearized and combined to give a small amplitude sound 

wave equation 

—^   =   V   P^-^   (ln+?)V   TT1      • (2.37) 
at 1    Po    3 9t 

The set of thermodynamic variables which will be used are P, T,c. 

The density variation may be written in terms of these variables as 

Pl l8P'T,c     1 + ^T'P, c  ^ ^ec'P.T   Cl 

and let 2 

*8p'T   ~   VT Y   8p  » Y 

where   v_ and v     are the isothermal and adiabatic sound velocities 
T s 

respectively.    The subscript 1 on the non equilibrium part of the 

thermodynamic variables will now be dropped.    Equation (2. 37) 

becomes 

2 2 2 

ac P,T  8t2        at p,c Bti     v^   8t2 p0   3 

(2.38) 

*  l-H^f+ (f)TiPv
2f M|e)PiCv

2f i 
T 

When the concentration and temperature fluctuations are small, 

Equation (2. 38) reduces to 
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at2 T "o        dt 

whe re 

n'  = 4 n + f 

which gives the dispersion relation 

u.)z-^ 2    2 
i u + v- k     =0 (2.39) 

VTP0 For long wavelength     k «    j—  ,  the dispersion relation is given by 

iw 
n'k 

2p0 

+   i kv. 1 -   'i  . 
2  2 

8pnvr '0   T 

which represents the damped propagating sound wave mode 

„    _,     ik- z-(icj+rv)t      ...        ,     .» ,    . , . P = P^e v'     with velocity   ä VT and viscous damping 

constant 

r   = k      A 
v - zr0 ^

+ ?) 

4.    Coupling of Sound Wave and Thermal Diffusion Mode 

In examining the coupling between the sound wave and the thermal 

diffusion mode,  the concentration fluctuations and viscous damping 

may be ignored.    In this case,  the equations which describe the 

physical system are 
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at T   at 

at +cp   ^'T.C  aT  "  XV T 

(2.40) 

Taking a Fourier transform of these equations leads to a secular 

determinant of the form 

iw -  xk ,as.       T 
'"^P'T   Cp 

=    0 

This dispersion relation can be put in the form 

k4 - k2 (4-+ f >+ ^ =   0 
XV, 

(2.41) 

The solution to this equation can be obtained for two limiting cases. 

1)   Adiabatic (low frequency or long wavelength) 

2 v,,, v T 
u « — :       k «   — 

X ' X 

In this case,  Equation (2. 41) gives 

k  Ä  iL   +  ^LJL    (i, 
v 2v ' 

s SV, V 
s 

(2.42) 



or 
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k2v   ^P        1V        k
2X   ,1 1 

:„ = ltV3 ,   rT = v<r- " -w^'t? 
v ^ v P 

which rorresponds to the propagation of sound with the adiabatic 

velocity and on absorption coefficient   I   .    This result is correct 

2 T 

ij«v  l\   means that during one period the distance which heat can be 
v 

transmitted   ~ V-^   is small compared with the wavelength   — 

2)   Isothermal (high frequency) 

2 
V V 

Lü »   — •      k »   - 
X X 

In this cast- 

k   ^   tt   +i   r1!     ^\-v\) (2.43) 
T 2XV

C s 

or 

u   =   k v T 

2 

In this case,  the sound is propagated with the isothermal velocity. 

The interest in this experiment is with light scattered in the backward 

direction from a gas.    In this case   k = 2k      v/here   k.    is the wave 

vector of the laser light wave.    Putting in numerical values,  one finds 

that for all liquids,  and gases with pressure greater than a few 

atmospheres,  the adiabatic limit condition is satisfied.    Typical 

results for some common gases are given in Table (2.1). 
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Gas 

He 

Xe 

SF6 

3.811/P 

.786/P 

.443/P 

Table (2.1)   -   Values of the parameter   —^   for gases of interest 

The dispersion relation Equation (2.41) for the coupled pressure 

and temperature equations is third order in   iy,    Two of the roots are 

the ones discussed above   CJ = + kv     which correspond to sound —       s 

waves traveling in opposite directions.    The remaining root corresponds 

to the thermal diffusion mode including the effects of the sound wave 

coupling.    For this mode   u— 0   so the dispersion relation becomes 

approximately 

lu k2 + li^ 
vT 

(2.44) 

In the low frequency,   long wave length limit 

2 v vT 

w«   -^   ,     k« Y   »       u «kvT   , 

This result gives the normal thermal diffusion damping constant 

iw   =   Xk    +O(0) 
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Thus the coupling of the sound wave and the thermal diffusion mode 

introduces negligible change in the thermal damping constant. 

5.    Coupling of Sound Wave and Concentration Diffusion Mode 

In the adiabatic regime the coupling between the sound wave 

and the concentration diffusion mode is given by the equations 

,90. c^c    .     1      dZP       ~2.„  .     1        r4     .  rt-1   ap 
'9c'T.P    Q,2    T     Z       2    -    v   -    ■ 2   i3./ ■  biv     9t 

9t v      at p-v 
s K0   s 

f   =   D[V2c+^V2P] dt F0 

(2.44) 

2 
For high frequency   u » Dk  ,  which is valid for the sound wave mode, 

the concentration and pressure fluctuations are related by 

ar DkP     2 
at        P0  

v 

The sound wave equation then becomes 

1      a2P        „2^       1       ,4      .r.Jt&P   .   ^HtM) rj2   SS 

vs  at p0vs 0 

Thus the coupling with the concentration diffusion mode causes 

additional damping of the sound wave by an amount 

c   -    ,   2.90.. ^c'P.T     - ?  2 3^ ^•^^, 
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For a dilute gas obeying the ideal gas law,   the chemical potentials 

of the individual species have the form 

H.1   =   kgTIn (1-c') +^1(T)    •     \i2   =   kBT £nc' +^2{T) 

where   k-,    is the Boltzman constant and   ^/ ,   li/,    are functions of 

temperature only.     Using these relationships,   it can be shown that 

k   T 
(ac)   =     c(l-c)[m"c+(l-c)m2] (2.45) 

and 

^^   =   N(m1-m2)c'(l-c')/p 

which gives the result 

Dv2k2 N(m1 -m,)2 cMl-C) 
■p      _ s i <- 

Thus,  for a mixture of two gases,  the concentration diffusion 

contribution to the sound wave damping becomes largest for a large 

difference in the mass of the two component molecules.    This 

damping occurs for the following reason;   diffusion currents of each 

species are driven by density gradients,   i. e.   the density gradients 

produce non-zero average particle velocities   v.    for each species. 

The gradient in the overall pressure in a mixture of disparate masses 

produced by the sound wave causes a relative particle flux in the 

mixture,  that is a non-zero relative velocity   v-\'w2.'    ^e relative 

velocity is reduced in a dissipative way by intercomponent collisions 

and this dissipation contributes to the acoustic attenuation. 
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The total sound wave damping coefficient in a viscous thermal 

conductive fluid mixture is given by 

r = r + rT + rn v        T        D 

k 
2Pr V       ^       ^O^c'P, T 

(2.46) 

The effect of the sound wave on the concentration diffusion mode 

is obtained in manner analogous to the effect of the sound wave on the 

thermal diffusion mode.    We consider again small frequencies 

w « kv  .    Then theconcentrationand pressure are related by 
s 

oc r-, i      at 

The concentration equation then becomes 

9c        n fn2     -   kp /ifi\ *2'c'[ -   =   D[7 c+  pr   (^)p)T   ^2"] 

which leads to the low frequency limit of the dispersion relation 

i CJ   =   Dk    -   =—   (-^) (i w) (2.47) 

For the gas mixtures under investigation, 

r»2i 2      P i$ü.\ in"8 

D  k     ^ (#   ~   10 
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so the dispersion relation reduces to the uncoupled concentration 

damping constant. 

2 
iw   =   Dk   +O(0) 

To summarize,  we have seen that the basic collective modes 

described by the hydrodynamic equations are the sound wave,  thermal 

diffusion and concentration diffusion.    The primary effect of the 

coupling between these modes is to increase the damping constants 

for each mode. 

D.     Coupling with the Electromagnetic Field 

In the presence of an electromagnetic field,  the differential 

free energy per unit mass must be augmented by terms due to 

variations in the electric field and the dielectric constant and takes 

the form 

dF   =   - s0dT +lV.c t!o dp - sI^S Ä (2,48) 

where s-,   n» , and Pn are the entropy,  chemical potential and 

pressure respectively when the electric field is absent.    Here   e must 

be regarded as a function of the variables T,c,p ,    It can be shown 

that the force per unit volume on an uncharged dielectric is increased 
4 

in the presence of an electric field by an amount 

%  g"d[E
2(^)T>cl-^(||)p]C   gradT-|L2 (||)T(p    gradc   . 

The last two terms are usually negligible compared to the first term. 
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The effect of electrostriction is therefore to add a term 

OTT 9p T, cJ 

to the right hand side of the Navier-Stokes equation (2.9).    For an 

Isotropie fluid without macroscopic flow so that the nonlinear 

hydrodynamic term (V • grad)V may be ignored,  combination of the 

linearized equation of continuity (2. 17) and Navier-Stokes equation 

leads to a small amplitude sound wave equation 

4^p-^[.|£.TiyW4,,w<f. 
(2.49) 

In this equation, p may be expressed in terms of the independent 

variables P, T, c by means of the equation of state. 

The coupling between the electric field and the thermal and 

concentration diffusion modes arises from the change in entropy and 

chemical potential when the electric field is added.    Integration of 

Equation (2.48) gives the result 

2 
F(T,p,c,E)   =   F0(T,p,c) -|^ 

where F,   F    are respectively the values of the free energy with and 

without the electric field.    The changes in entropy and chemical 

potential when the electric field is added are given by 
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vaT'p,c,E vüT'p,c       BTTp  VaT'p,c 

S0 r  871p  \)T'p,c 

^        ' {dc'p,T,E       ^0 ' 8j7p   l9c'p,T 

The coupling between the entropy (or temperature) and the 

electric field manifests itself in the electrocaloric effect and is the 

coupling term which produces Stokes-shifted stimulated thermal 

5 
Rayleigh scattering   .    The coupling between the chemical potential 

and the electric field drives the concentration diffusion current which 

produces the stimulated concentration Rayleigh scattering.    In the 

presence of an optical absorption constant a   an additional term must 

be added to the thermal diffusion equation which finally becomes 

9l+l0/9£\ 9P     I ^I A I     EZ
      ld( \ 1    2£- 

at     cp^p'T,cat     I Cp lac'p, T    87Tpcp v8c'P,T J   at 

The coupling between the temperature and electric field provided by 

the optical absorption produces the anti-Stokes shifted stimulated 

thermal Rayleigh scattering  .    The concentration diffusion equation 

becomes 
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at ~  = D V2c + TTVT + ^ V2] To po 8rrp(f)T>p 
V2[(|f)T>pE2] 

(2.5,1) 

To these three equations the wave equation for the electromagnetic 

field in the isotropic medium must be added 

V^--^ 92E 
2    ^2 

c0   at = 7r?E^T.c
p + ^P,cT + ^P,Tci c0   9t 

(2.52) 

Since the characteristic relaxation times for thermal diffusion, 

mass diffusion, and acoustic damping are short compared to the 

duration of the laser pulse,  solutions to the set of four simultaneous 

second order differential equations may be found in the parametric 

linearized approximation,  in which the laser field 

EL(7,t)   =   i ET e^-^Lt + cc 
2 ~L 

is considered as a constant parameter.    The scattered light is 

represented as a backscattertd wave with amplitude E  ,  frequency u 
9 S 

and wave number k 

(7,t)   --  i-E  e"11^"1^ + cc 
2 "s 

The pressure,  concentration and temperature variations are assumed 

to have solutions of the form 
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p/7  t^   -   ^P   Jkz-iut , 
^(r > t)   -   2    1 + cc 

c{r ,t)   =   -^ c1 e w    + cc (2. 53) 

T(r,t)   =   ^ T1 eikz"iL,t + cc 

with k and CJ satisfying the phase and frequency matching conditions 

k   =   k.   + k L        s 

w   =   wL " us 

When these expressions are substituted into equations (Z. 49) - (2. 52) 

and all terms of higher order than linear in the four small amplitudes 

are ignored,  a secular determinant is obtained which gives a general 

dispersion relation.    For the special case   ET =E   =0,  absence of the 

electromagnetic field, the relation must reduce to the description of 
2 

sound waves in a fluid mixture   .    Numerous papers have been devoted 

to the description of stimulated thermal and Brillouin scattering of 

1 8P 5~9 light in a single component fluid where   c   = 0 ,  «r* =0. 

The interest in this work is directed toward concentration 

scattering in a nonabsorbing gaseous mixture.    Solutions for this case 

will be presented in the next section after explicit expressions for the 

coupling coefficients   -r^ , "r*   and   -r^   ^ave been given. 

For a substance which obeys the Clausius-Mosotti relation, 

^   =   ^  N[c'a1 + (l.c')a2] 
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where   a . and a ., are the polarizibilities of the two molecular species, 

one readily obtains with the aid of Equations (2. 13) - (2.16) 

P0<i>c,T   =  ^c,T   =  ^f)c',T   =  i(e-l)(e + 2) 

(2. 54) 

(iL) =(&£.) 3£!   =   ±L    (r + 2)2mim?N       (a    . a   j 

' ' [m.c+ (1 - c)m2J 

and 

'^If^c   =   -3(e-l)(e-H2) 

For a gas with a small optical density one may put   ■*^4—'  ä 1. 

It should be noted that the coupling of the electric field to the 

concentration can become comparable to the density coupling only for 

a1»Q2. 

E.     Stimulated Brillouin and Concentration Scattering 

1.    Introduction 

In previous sections,  the equations which describe the dynamics 

of the binary gas mixture have been developed.    We have also seen 

how the fluctuations in the thermodynamic parameters which 

characterize the system are coupled to the electromagnetic fields, and 

have observed that through these coupling mechanisms the electro- 

magnetic fields can drive coherent fluctuations in the pressure, 

concentration and temperature.    The final step in the analysis is to 

then discover how the electromagnetic fields interact with these 

coherent fluctuations.    We have seen that if the gain factor for the 
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stimulated wave is sufficiently large the amplitude of this wave will 

increase,  in the steady state approximation,  exponentially with the 

distance traveled through the medium.    The frequency of the 

stimulated scattered wave is the frequency at which the gain is 

maximum.    The calculation of the scattered wave gain as a function 

of frequency is the subject of this section. 

Since the collective modes of the binary mixture are strongly 

coupled,  the gain must be determined by a simultaneous solution of 

the hydrodynamic equations and Maxwell's equation for the Stokes 

wave.    This solution has been found and is in good agreement with 

experimental results.    However,  the expression for the gain which 

is obtained when the coupling between the normal modes of the system 

is included is quite complicated,   so the dependence of the gain on the 

various parameters is difficult to observe.    For this reason,  it is 

desirable to investigate the gain which is obtained when the coupling 

between the collective modes is ignored.    In this approach,  we 

calculate separately the gain for scattering from the sound wave, 

concentration   diffusion mode and thermal diffusion mode.    As a 

first approximation then,  the frequency shift of the scattered wave 

should be the shift which is characteristic of scattering from which- 

ever mode produces the highest gain. 

2.    The Coupled Equations 

The sound wave equation,   including the effects of the coupling 

with the electromagnetic field Equation (2.49),  may be written in the 

form 
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1      a2P ,    ,3o, a2T .  .öfi.   82c „2 

vT   9t 9t 8t 

^0   /iS) V72E
2 

Po^(^2 

(2.55) 

47r(e 
ap^.T f i   72       ag 2      aß        -2 1 
+ 2) 12   v ^ + ^ac'P, T v c + laT'p, c v M 

2 ae The last term,  which arises from   V (Q )   in Equation (2.49) results dp 
in an intensity dependent contribution to the Brillouin shift in addition 

to the contribution which was pointed out by Wang    .    The intensity 

dependent effects for the gases used in this experiment are negligible 

and are not included in further discussion.    The concentration 

diffusion Equation (2. 51) takes the form 

f-   =   D[V2c+=£ V2P   +  J-   ^T] 

(2.56) 

D(|f)V2E DE2V2(|f) 

^PO^P, T 8^0<f)p, T 

The last term may be evaluated by means of Equation (2. 54) in terms 

of   V P.,    V c.,    v T^    This term produces an intensity dependent 
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shift of the stimulated concentration scattering analogous to the 

similar term in Equation (2. 55).    The contribution of this term is 

also small and will not be included in further calculations. 

The thermal diffusion equation (2. 50) may be given in the form 

T^a^   „«     kw   „ . , T„ . „„2 
8T _      (TT   8P . 3 ,ith 8£       v r72T -        0      /Ö£ 

' QT/I 
8E 

at     p0cp   at     cp^ac'p, T at   ~ ^v       87rp0Cp vaT'p,c   at 

(2.57) 

where Maxwells' relations have been used to show 

(91) =   .  !l 
^BP'T.c p0      ' 

where   a-,   is isothermal expansion coefficient. 

3.    Gain for Scattering from Uncoupled Modes 

a.    Brillouin Gain 

In the decoupled mode approximation, the Brillouin gain   G« 

is obtained from the sound wave equation and the Stokes wave equation 

ignoring the dependence upon temperature and concentration. 

at p     at Y       STT 
xap'T,c    s 

(2.58) 

where 

c0      at c0 at 

2Por 

HT   =-7- 
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Substituting the steady state expressions (Z. 53) one finds the 

dispersion relation 

2  2  2 
.   2  , 2  2 x     ,2      .. e        2     . 2. ^ Po   .Jr^   k v

s
L's   1r,    i2 (.  -k vs+lc k nT)(^^      " ks) + ^   (^     -j-2-  JE    1      =   0 

C0 C0VT 
(2.59) 

The spatial gain of the Stokes wave amplitude is given by the 

imaginary part of the Stokes wave vector.    We make the following 

separation 

k     = s ksr + iGB G_ «k B          sr 

k     = kr + iGB 
JL     2        u2 

■^s    =   ks co 
k sr ^ 

k     = 2k sr 

(2.60) 

The Brillouin gain coefficient   G-^)   is then given by 

B 2 
87rc0 

/ 2 , 2  2  .  ,    2  ^x     [ PQ      8^ 2 2,       jzlN 

The term in square brackets in the denominator gives the intensity 

dependent pulling of the Brillouin frequency which was discussed by 

Wang    .    For the system under investigation here, this term is a 

small correction and will be ignored.    Then the Brillouin gain 

becomes 
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^krVnT(|g)2
T.clEL|2, ^^ 

87rco 
2     2  2 2 2  ^T (ü  -krvs)    + (krU- Wl 

In the approximation that the inverse damping time for the sound 

wave F is much smaller than the sound wave frequencv   kv 
s 

(F« kv  ), the Brilloain gain is maximum at s 

2        ,22^,22 
D      =kv-lÄikv r  s r   s 

The maximum value of the Brillouin gain is then given by 

i_    12     .9 €.2 

GBmax   Ä  S^^B2^)   = -T^ T 327rc-nv   T 0     s 

where 
c0n|EL|2 

IT    =   s         is the laser intensity 

and 

(2.62) gB .       3 4c0n vsr?T 

It should be noted that the Brillouin gain increases proportionally to 

the square of the density. 

b.    Concentration Ravleigh Gain 

The gain due to scattering from the concentration diffusion mode 
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is obtained in the decoupled mode approximation from the equations 

at DV2c 
D(|f )p. T V2E 

8^0^)p, T 
(2.63) 

V2 E     = s cn     at 

Following the procedure used in the previous section,  o.ie finds the 

concentration gain   G (u)   is given by 

G     =   Re 
iD"Mf'p.Tkr EJ

2 

^^■t.-pV"*^* 
"D"Mf'p.. iEi/" \ 

.'"VO^'P.T ) 

The term in the square bracket in the denominator gives the frequency 

dependent pulling of the stimulated concentration frequency.    Again, 

this term is negligible.    Thus the concentration gain is given by 

Dk2S#p..TlEL 

^O^ÄST w 

 U  
2       2   4 

+ D   k 
(2. 64) 

This gain assumes a maximum value for a small Stokes shift   u = Dk 

cmax 
=   8, 

s ^ac^P.T 
4cOnV|^P,T 

(2.65) 
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Since the coupling constant   (—)   is proportional to the density,  the 

concentration gain is proportional to the density. 

Numerical values for the gain constants   g« and g    are given 

in Chapter IV. 

The ratio of the gain constants for stimulated Brillouin and 

concentration scattering is 

gB - * ^2  sr (2-66) 

In this decoupled mode approximation, one would expect to observe 

stimulated concentration scattering when this ratio is greater than 1. 

From Equations (2.46) and (2. 54),  it follows that a large difference 

in polarizibility and a large difference in mass of the two components 

is favorable to make this ratio large.    Furthermore, the total 

density or pressure should be kept low since the ratio is inversely 
12 proportional to the density    .    For a gaseous mixture.  Equation (2. 66) 

can be simplified with the aid of Equations (2. 45) and (2. 54) to 

«c.        kvsrP0    ^"')i*r*/ (2.67) 
gß ^B1"       [a^' + d-Ch^ 

c.    Thermal Raylejgh Gain 

The thermal Rayleigh gain due to the stimulated scattering from 

the thermal diffusion mode is obtained from the equations 
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91 -    V^T T0        ,3^. dE^ 
at      xv 87rp0Cp l8T'p, c   at 

The thermal Rayleigh gain is given by 

One may observe that the form of the driving term due to the electro- 

magnetic fields in the temperature equation is different from that in 

the concentration and sound wave equations; and, as a result, there is no 

intensity dependent pulling of the frequency of the stimulated thermal 

Rayleigh line. 
2 

The maximum of the gain  GT(u)) occurs at  u = xk   and is given 

by 

I  =   «T  T~ (2-69) 
L 4p0c0n cp 

The ratio of the gain constants for stimulated scattering from the 

concentration and thermal diffusion modes is 

„ .ac.2 

1       1olaT,p,c ^ac'p, T 
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which,  for a gas mixture,  becomes 

■f    =    -^ ^ ^ 5—2  (2.71) 
gT kBfc,a2 ■•■ (1 " c') Q

2] 

Numerical values for the gain constant   g      are presented in 

Chapter IV. 

4.    Complete Solution to the Coupled Equations 

The behavior of the stimulated light scattering Irom the gas 

mixture is well described by this uncoupled mode approximation when 

the helium concentration is low.    As the helium concentration 

increases,  the mode coupling becomes stronger,   and the sound wave 

damping becomes comparable to the frequency shut.    In this case an 

adequate description of the frequency dependence of the gain can be 

obtained only by solving simultaneously the set of hydrodynamic 

equations (2. 55) - (2. 57) and the Stokes wave equation {2. 52). 

The gain of the Stokes wave due to scattering from the coupled 

mode of the gas mixture   GB   T(w) can of course be obtained in the 

same manner in which   C„,  G  ,  and G- were obtained.    That is, 

substituting the steady state expressions (2. 53) into the coupled 

hydrodynamic equations and the Stokes wave equation leads to a   4x4 

secular determinant which gives the general dispersion relation.    The 

spatial gain of the Stokes wave amplitude is then given by the 

imaginary part of the Stokes wave vector. 
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For computational purposes, it is easier to solve the three 

hydrodynamic equations for the amplitudes of the pressure, 

concentration, and temperature fluctuations and substitute the results 

into the Stokes wave equation to obtain the gain.    The manner in 

which this solution is accomplished is as follows.    The Stokes wave 

is given by 

E  (zt)   =   ^ E  (z)e'ik8rZ'lw8t + 
S £       S 

cc 

where 

E (z)   =   E     ezGBcT   an(j   E is a constant, 
s sO sO 

Again assuming that the variation of the amplitude over one wavelength 

is small. 

a2Ea{z) 
9 

az 
«    k sr 

9Es(z) 

dz 

or    GT,   _, « k      , the Stokes wave equation becomes 
BcT sr' 

aEg(z) 

dz 

u  2 
s 

2       2 
2ik    c* sr 0 

^P'TJCM   +   ^T'P.C S^^c'T.P^I 

(2.72) 

Since the three complex amplitudes   P.,  T1,  ^   are each proportional 

to E, E  (z) (again neglecting the intensity dependent terms), this 
Li       S 

result may be written as 

1 8Eg(z) 27ruj8 

'BcT   '   E  (z)        8z s ik    cn sr  0 
I     X 

NLS   „   2ltUB   j        NLS 
c0n     m X 

(2.73) 
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,.,,,. NLS which defines   x as 

NLS 
STTE  (Z) 

s 
[(||)P;+(|f)T;+(|f)c;] (2.74) 

After substitution of the expressions (2. 53),  the coupled hydrodynamic 

equations can be written in matrix form 

W •  A 

where   A   is the column vactor 

(2.75) 

The matrix   W   has the form 

W   = 

-^-(ii, + bk2) + k2       iutop  T(iD + bk2)       üÄp Jiw+bk2) 2 
VT 

2^ 
Dk' ^ 

^0 

iw 
*£  ^T 
:P   ^0 

Dk   +iu) 

■iu ^  ^P.T 

dT'P,c' 

2 kT 

iu; + X^ 

(2.76) 

where 

•i^"^ 
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and 

X   = 
PO

C
P 

And   Y   is the column vector 

Y   = 

871 ^T.c k ELE8 

8'Po(f'p,T      L   ' 

8ffp 0Cp L   s 

The solution for the Stokes wave gain due to the coupled 

Brillouin, concentration and thermal diffusion modes of the gas 

mixture   GR  T   may now be obtained in a straightforward manner. 
4 >|e >!( 

The matrix equation (2. 75) is solved for the amplitudes   P. , c. ,  T. , 

which gives in turn the nonlinear susceptibility   x The gain 

G„   T then follows directly from Equation (2. 73).    For the purposes 

of calculation, we write 

where   I, 
M*J 

GBcT   =   gBcT ll* 

is the laser intensity. 

The complete solution for gR  _   is too lengthy to write out fully 

here.   A numerical solution has been made by use of a computer and 

will be presented in Chapter IV.    It is of interest however to determine 
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the roots of   det(W) since those are the points at which the gain has 

a resonance,  and therefore the points at which stimulated scattering 

may occur.    The approximate roots of   det(W)are found considering 

vk        bk Dk the  dimensionless parameters   (■i—) ,   (—)   and   ( )    as small.    For Vs' '   lvs' 
xvs ' 

the gas mixtures under consideration,  all three of these parameters 

are   ä 0. 1.    To lowest order   (i. e.   T = 0),  the roots of det(cj) = 0   are 

u = 0,   + v k.    In the next approximation (0 < F « kv  ) when linear —    s s 

terms in the small quantities are retained,  the roots should correspond 

to the values of the frequency shift which were obtained from the 

decoupled mode approximation.    One obtains 

detU = -v^(w-z1Hw-z2)(w-vgk-iI)(u + VBk-ir) (2.77) 

The two roots 

w   =   +   v k + iFk2 

—     s 

are the propagating sound wave modes with the damping coefficient T 

given by 

2 

r ^ 'W^'^zg- 
G^c'P, T 

kP 

:P 

(2.78) 

(ifi)        +-I(ifi)       A 
^c'P, T* cp ^T'P, c^c'P, 

The positive root corresponds to the Stokes shifted stimulated 

Brillouin which has positive gain,  while the negative root corresponds 

to the anti-Stokes wave which has negative gain. 

It is important to note that in a binary mixture the sound wave 

has an extra damping term due to the coupling with the concentration 
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11 rv O 

fluctuations    .    This extra damping depends on   (-f^lp  T   and 

consequently the sound wave is heavily damped in a mixture with a 

large difference of component masses.    Thus the threshold of 

stimulated Brillouin scattering is increased by mixing.    This factor 

is of primary importance in making possible the observation of 

stimulated concentration scattering.    The roots which are related to 

the nonpropagating modes are 

wi  2   =   + ik2 H(x + 3) ±  \ [(X + S»)2 " 4xD]I> (2. 79) 

where 

<2   =   D 1 + T c      ^c^T 

when 

2 .2 
T   =   0 '    w1.2   =   iDk    '    *■*■* k 

The root OJ.   corresponds to the concentration diffusion mode and 

gives stimulated concentration scattering while the root   u-  corresponds 

to the thermal diffusion mode which gives stimulated thermal Rayleigh 

13 
scattering.    These roots have previously been obtained by Martin    , 

14 
and by Mountain and Deutch Thus the resonances in the coupled 

gain expression,  in the limit of small coupling between the modes, 

do reduce to the values predicted by the decoupled   mode approximation. 

■   ■ 
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CHAPTER   III 

EXPERIMENTAL   APPARATUS   AND   TECHNIQUES 

A.      Introduction 

In this chapter the experimental apparatus and techniques 

developed to generate stimulated light scattering in the gas mixtures 

under investigation and to measure the difference in frequency 

between the laser and the stimulated light wave are discussed in 

detail.    The basic problem was to produce laser pulses with high 

intensity and sharp frequency spectrum,  focus this beam into the 

gas mixture and analyze the spectrum of the backward scattered 

light with a suitably high resolution Fabry-Perot interferometer. 

The necessary sharp frequency spectrum of the laser output 

was achieved by careful axial mode selection of an existing ruby 

oscillator.    The high intensity of the laser output was attained by 

constructing a ruby amplifier system. 

Successful completion of the experiment was also due to the 

development of a new technique for reaching stimulated oscillation 

in the gas mixture with limited laser power.    This technique is 

applicable to facilitate the observation of any low gain stimulated 

scattering process, as it lowers the required threshold power. 

We now proceed to discuss the various parts of the 

experimental apparatus in detail. 
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B.    The Laser 

1.    Ruby Oscillator 

The ruby oscillator used in this experiment was a Maser Optics 

Model 868.    This laser has a double ellipse head.    Optical pumping 

of the ruby is done with two water-cooled Xenon flashlamps (E.  G. 

and G.   FX47C-6. 5).    The ruby rod used was a Verneuil grown rod, 

6 inches long by l/2 inch diameter with a doping of 0. 04% CrO    . 

This rod has the end faces perpendicular to the rod axis and the 

optical axis of the ruby at 60 degrees to the rod axis.    The rod was 

water cooled by a Model K-2 Landau Circulator which maintained the 

water temperature constant to within   +0.1 degree centigrade.    The 

ruby rod was of very poor optical quality, containing many small 

bubbles and crystal dislocations,  which was a primary contributing 

factor in making single transverse mode operation of this laser 

virtually impossible.    The laser cavity was defined by front and rear 

reflectors separated by 150 centimeters.    The rear reflector was a 

quartz flat (I inch diameter by 3/8 inch thick) with a surface figure 

of l/20 \.    This flat was supplied by Perkin Elmer Corporation with 

a high field damage dielectric coating with reflectivity of 99 + % at 

6943 Ä.    The flat was mounted in a Model 10. 203 Angular Orientation 

Device (A. O. D.) supplied by Lansing Research Corporation.    The 

front reflector was a Model RR223-4 Resonant Reflector from Laser 

Systems Corporation.    The resonant reflector consisted of four 

optically aligned quartz plates (i.e.  an eight surface Fcbry-Perot 

interferometer) which provided excellent axial mode discrimination. 
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This point will be discussed in greater detail later.    The front 

reflector was mounted in a Lansing Model 10. 253 A. O. D.    On this 

mounting, the mirror alignment is controlled by a differential screw 

micrometer with an angular resolution of 0.1 arc second.    The 

Lansing mounts permit precise aligmnent of the laser reflectors to 

be made easily and they are sufficiently stable that, with care, 

adjustments in alignment needed to be made only about once every 

two weeks. 

The laser is Q-switched with a solution of cryptocyanine dye 

dissolved in methanol.    The dye cell was located between the ruby 

rod and the rear reflector.    The dye concentration was adjusted so 

that the laser operates just slightly above threshold.    This condition 

was found to give the best reproducibility in laser power output and 

the narrowest line width. 

The rod holder supplied with the Maser Optics head had two 

serious problems which required modifications to correct.    This 

holder was very unstable to mechanical vibrations making it im- 

possible to hold exact alignment of the rod with the cavity mirrors 

for more than a few hours.   Also in the original design, the rod 

cooling water flowed past both faces of the rod with the rod holder 

sealed at both ends by l/8 inch thick quartz windows.   These windows 

were of poor optical quality and it was not possible to align them 

parallel to the cavity mirrors.    The windows and water in the beam 

path introduced off-axis reflections and scattering in the beam which 

increased beam divergence.    A new rod holder was designed in which 

the rod faces were exposed to air, thus eliminating the unnecessary 
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quartz windows.    This holder was also attached securely to the laser 

base plate which greatly improved stability against mechanical 

vibration. 

After mechanical stability of the laser head and cavity mirrors 

had been achieved, the problem of mode selection was undertaken. 

It was necessary to produce consistent,   single axial mode output of 

the laser in order to perform the high resolution spectroscopy 

required to observe the stimulated Brillouin and concentration 

scattering from the gas mixture. 

2.    Mode Selection 

a.    Modes in an Optical Resonator 

The general problem of the interaction of an excited atomic 

system with the optical cavity is of primary importance in under- 

standing laser behavior.    The earliest proposal for using open 

resonators,  consisting of a pair of opposing plane or curved reflectors 

1 2 was that of Dicke .    Schawlow and Townes    suggested that such a 

resonator will discriminate heavily against modes whose energy 

propagates along directions other than normal to the reflectors.    In 

order to support high Q (low loss) field modes, the dimensions of the 

reflectors must satisfy the condition 

where a is the radius of the reflector, X the radiation wavelength and 

D the reflector separation.    Also there must be a family of rays which 

upon sequential specular reflection do not miss either reflector before 
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making a reasonable number (^20-100) of passes.    An open resonator 

which satisiics these two conditions is referred to as "a stable 

resonator.    Theoretical studies of the modes in a stable, open 

3 4 resonator have been made by Fox and Li  , Boyd and Gordon , and 

Boyd and Kogelnik .    The result of this analysis has been to show 

that,  for any stable resonator, there exists a set of steady state, 

discrete standing wave modes specified by three indices (TEM ). 

These modes take the form of almost plane wave beams which 

propagate back and forth between the reflectors.    The field intensity 

distribution of the modes depends upon the parameters of the optical 

cavity:   shape, dimension and curvature of the mirrors and their 

separation.    The q index specifies the number of half wavelengths 

which are contained in the distance of the mirror separation D.    This 

index is the longitudinal mode index.    The values of the indices m, n 

for the observable modes of an optical resonator are small and they 

specify the transverse mode pattern TEM 

The electric field distribution of the transverse modes is 

calculated by use of the scalar formulation of Huygen's principle to 

compute the field at one of the mirrors in terms of an integral of the 

field at the other.    The steady state transverse modes are then 

specified by the requirement that the field pattern at one reflector be 

reproduced after one round trip of the cavity multiplied by some 

complex number which gives the total phase shift and loss.    The 

resulting integral equation is solved by use of a computer. 

Ordinarily within the active volume of the laser crystal many 
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longitudinal and transverse modes are excited,  each transverse 

mode ha äng a cross-sectional area much smaller than the total 

cross-sectional area of the active volume.    This behavior is 

characteristic of a laser medium which is optically inhomogeneous, 

has inhomogeneous distribution of excited ions (resulting from non- 

uniform pumping) and long spatial cross relaxation tinne (^ 10 

second for ruby). 

For a plane parallel resonator, the mode separation is 

approximately given by 

^b   ~  15     [M + YT (^) {2mAm + (Am)2 + 2nAn + (An)2)l    (3-2) 

where a is the radius of the mirror.    This approximation improves 
a2 

rapidly with increasing Fresnel number   T-=.    The longitudinal mode 

separation given by   Aq = 1   is easily resolvable and is given by 

A(r-) - Ay = ysr.    The mode separation corresponc   \g to   Am or An = 1 

is much smaller and usually not resolvable at optical frequencies due 

to large Fresnel numbers and low reflectivity of practical laser 

resonators.    For the laser used in this experiment: 

rr=r      -    . 003 cm 

2 (3'3) 

tu - 100 

so the spread in frequency of the first few lowest order transverse 

"5        -1 modes is   -^ 3 x 10      cm     (1 MHz). 

To do high resolution spectroscopy of stimulated light scattering 



-74- 

which requires focusing of the laser beam into the scattering medium 

to produce sufficient intensity to reach threshold for stimulation, it 

is desirable to limit the laser output to a single longitudinal and 

single transverse mode.    The techniques used to effect mode selection 

are discussed in the following sections. 

b.    Longitudinal Mode Control 

For ruby at room temperature, the natural fluorescent line- 

width of the R lines is approximately 10 cm    .    The longitudinal mode 

spacing for a cavity 150 cm long is   "•'. 003 cm    .    So in general, 

many longitudinal modes will be close to the maximum of the gain 

profile and will oscillate.    The number of longitudinal modes may be 

limited by reducing the cavity length and operating the laser at low 

temperatures so that the fluorescent linewidth becomes narrow enough 

to allow oscillation in only one axial mode.    It is, however, more 

desirable to obtain mode control at room temperature.    This may be 

done,  as was first suggested by Kleinman and Kisliuk , by introducing 

additional reflecting surfaces inside the resonator.    In particular, if 

the front reflector is replaced by an etalon and the laser operated 

just above threshold, only those modes which are reflected in phase 

from both sides of the etalon will oscillate.    The selected modes are 

then modes of the etalon itself.    The etalon thickness may be adjusted 

so that only a few of its fundamental modes will be near the maximum 

of the laser gain profile.   If additional reflecting surfaces are added 

the conditions on the possible oscillating modes become more 

stringent.    With the ruby oscillator power output of  ^ 10 - 20   y 
cm6 
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it was found by trial that the resonant reflector consisting of four 

optically aligned quartz plates provided sufficient axial mode 

discrimination that a single axial mode output was consistently ob- 

tained.    This resonant reflector was constructed so that the optical 

path length was the same in the air gaps between the plates as in the 

plates themselves.    A computer calculation of reflectivity of the 

resonant reflector as a function of wavelength was made    by extending 

the analysis given by Born and Wolf    of the two surface problem. 

The results of this calculation are shown on Figure (3. 1).    The 

reflectivity peaks are separated by about 1A (2 cm    ) and the width 

of the peak is about 0.1Ä (0. 2 cm    ).    The maximum reflectivity is 

~64%.    The reflectivity peaks were sufficiently sharp and well 

separated that only a single axial mode reached oscillation threshold. 

The spectrum of the laser output was examined with a 6 cm 

Fibry Perot interferometer.    A typical result is shown in Figure 

(3.2a).    It is clearly evident that only a single mode is oscillating 

and its linewidth is   <. 005 cm    .    The primary factors contributing 

to the laser linewidth are optical inhomogenieties of the ruby crystal 

and dye cell,  reflector imperfections and mechanical vibrations of 

the cavity reflectors. 

The temporal behavior of the laser Q-switched pulse is 

monitored by a TRG 105B planar photodiode.    This photodiode has a 

rise time of   < 0. 3 nanosecond.    The photodiode output is displayed 

on a Tektronix 519 oscilloscope with a rise time of  ^ 0. 3 nanosecond. 

Any temporal modulation of the laser output can easily be detected. 
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6944 6943 6942 

WAVELENGTH  (ANGSTROMS) 

Fig.   3.1    Reflectivity versus Wavelength for the Resonant Reflector 
Consisting of Four Parallel Ouartz Flats 
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(a) 

NOT REPRODUCIBLE 

(b) 

Fig.   3. 2   (a)   Frequency Content of the Laser Pulse Analyzed by 
6 cm Fabry-Perot Etalon 

(b)   Oscilloscope Trace of the Laser Pulse.    The Scale 
is 30 ns/division 
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If the oscillator is carefully aligned and operated slightly above 

threshold the temporal behavior of the laser pulse is as shown in 

Figure (3. 2b).    There is no visible modulation which confirms the 

oscillation of only a single axial mode.    If the laser is operated 

considerably above threshold, the time trace shows modulation due 

to the beating of two or more axial modes.    The relatively long time 

duration of the laser pulse indicated by Figure (3. 2b) (^ 50 nano- 

seconds) for a laser of this type is due to the high reflectivity of the 

resonant reflector.    This leads to high cavity Q.    As the oscillator 

2 2 
power output is increased from '■*• 5 MW/cm    to ^ 20 MW/cm    with 

the dye concentration also increased so that laser-threshold is only 

slightly exceeded, the pulse duration drops from "^ 50 nanoseconds to 

'»- 20 nanoseconds. 

There has been some recent consideration of the frequency 
Q 

drift of a Q-switched ruby laser during the pulse.    Pohl   has 

& iggested that the drift is due to changes in the refractive index of 

the ruby and/or the saturable dye due to a time varying population 

inversion.    He observed a drift of 350 MHz (^ 0.12 cm   ).    It appears, 

however, that this effect is not the same for all lasers since the 

total linewidth of this laser including any frequency drift is less than 

150 MHz. 

c.    Transverse Mode Control 

The reason why it is desirable to suppress oscillation of all 

but the lowest order transverse mode TEM     is that all higher order 
GO 

modes have a larger divergence.    The very high values of electric 
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field intensity (^lO    W/cm ) which are required to observe the 

stimulated concentration scattering are reached by focusing the laser 

beam.    A beam with divergence angle 6 will be focused by a lens of 

focal length f to a spot of diameter 

d   =   fö . (3.4) 

Thus to obtain a particular threshold intensity at the focus of a lens, 

the total power output of the laser is minimized if the beam has the 

minimum divergence. 

A laser beam which has only TEM oscillating is commonly 

referred to as a diffraction limited beam and has divergence angle 

approximately given by 

where n is the index of refraction of the crystal and d is the dia- 

meter of the active area.    When several transverse modes are 

oscillating, the beam divergence angle is given by the square root 

of the number of modes which are oscillating multiplied by the 

diffraction limited divergence angle ö_   .     (under the assumption that 

if a particular mode TEM is oscillating all the lower order modes r m, n & 

are also oscillating). 

The usual technique for transverse mode selection makes use 

of the fact tnat the diffraction losses for the TEM      mode are less oo 

than for any other mode.    An aperture may oe introduced into the 

cavity with diameter chosen so that the loss of higher order modes 

is increased sufficiently that they will not oscillate.    Various 
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combinations of lenses may be used in addition to the aperture,  but 

the principle is the same.    In attempts to transverse mode select the 

laser used in this experiment, apertures of various sizes were 

tried,  with and without lens combinations, both with flat rear re- 

flector and a spherical rear reflector with 10 m  radius of curvature. 

None of these methods gave TEM      operation of the laser.    The ob- 

served beam divergence 9 ^ 10 ön T     indicates that approximate- 

ly 100 transverse modes were oscillating.    It is now clear that the 

reason for this behavior is the poor optical quality and the non-uniform 

pumping of the rod inherent in the double ellipse head design.    In this 

case the laser oscillates in several areas with local conditions 

determining the mode properties.    The areas may oscillate indepen- 

dently.    This behavior is enhanced with high power Q-switched 

operation where the transient effects of gain saturation may lead to 

severe mode distortion    . 

d.    Near and Far Field Patterns 

The spatial and angular distribution of the field in the laser 

beam are given by the near (Fresnel zone) and far (Fraunhofer zone) 

patterns respectively. 
a2 

The near field is the region close to the laser compared to  ^r 

(■^ 5 m for this laser) where a is the beam radius.    The near field 

pattern may be observed by exposing film to the laser beam (with 

suitable attenuation) close to the laser.    A lens may also be used to 

magnify the beam so the detail of the spatial distribution is more 

easily observed.    The near field pattern of this oscillator with 
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magnification of four is shown in Figure (3. 3).    This photograph shows 

that   the beam consists of many small diameter (^ 250 |i) filaments, 

which are due to the interference of many transverse modes.    It is 

exactly this type of output which one tries to avoid by transverse mode 

selection because these  "hot spots" easily produce damage in the 

amplifier stage. 

a2 
The far field is the region far from the laser compared to  -57. 

In this region,  all of the light traveling in a particular direction 

arrives at some point,  i.e.  the spatial distribution of energy in the 

far field is directly related to angular distribution of energy in the 

beam.    The far field pattern is also produced in the focal plane of a 

simple lens.    If then the beam is focused onto a film plate,  the beam 

divergence angle 9 can be measured from the relation 

e = j (3.7) 

where d is the spot diameter and f the focal length of the lens.    For 

this laser the beam divergence measured in this manner is   ^2 mr. 

3.    Amplifier 

In order to produce the laser power required to reach threshold 

for stimulated concentration scattering it was necessary to build a 

ruby amplifier.    The advantage of the oscillator-amplifier system over 

a very high power oscillator is that the high power can be reached 

while maintaining a single axial mode and consequently a narrow line- 

width.    The well controlled beam from the low power oscillator is 

amplified on a single pass through the optically excited ruby amplifier 
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NOT REPRODUCIBLE 

Fig.  3. 3    Near Field Pattern of the Ruby Oscillator with Magnification 
of 4 
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rod.    Since the amplifier gain is maximum at the center of the output 

spectrum from the oscillator, there should be some gain narrowing 

of the spectral profile.    The amplifier system used in this experiment 

was built by the author.    The necessary design considerations are 

briefly reviewed in the next section. 

a.    Design Considerations 

The amplifier head was built to make use of a Vernuil ruby rod 

7 inches long by 5/8 inch diameter with Brewster angle cut at each 

end.    The maximum gain from ruby is approximately two for each Z 

inches of length.    The maximum gain for this rod is therefore   ^ 11. 

The rod was water cooled at room temperature and mounted in a 

double ellipse cavity.    The optical pumping was achieved with two 

water cooled E.G.G.  Incorporated FX67-7 Xenon flashlamps.    Energy 

storage for the amplifier consisted of two 375[iF and one 480|iF 

capacitors rated at 4 Kilovolts.    The necessary capacitance was 

calculated from the maximum safe energy loading for the quartz 

flashtubes.    An old,  laboratory built power supply was modified for 

use with the amplifier.    The circuit dir.gram is shown in Figure (3.4). 

The circuit which was used to trigger the amplifier flashlamps is 

shown in Figure (3. 5).    To obtain maximum gain from the amplifier, 

it is necessary to trigger it at a short time ('"*'200-400 seconds) 

after the oscillator has been triggered.    Circuitry which performed 

this operation was designed and built   .    It consists primarily of 

sequentially triggered monostable multivibrators.    The operation of 

the timing circuit is indicated schematically in Figure (3. 6) and the 
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timing of the various stages is shown in Figure (3. 7).    Several 

features which improved the safety of the laser operation were 

inch.ded.    The timing circuit operation basically is as follows: 

Initially all of the circuits are disabled by the  "off" state of the 

bistable gate.    Thus,  no random noise or line voltage fluctuation 

can fire the laser.    The firing sequence is initiated by making a 

ground connection with the trigger switch.    This causes the manual 

pulse circuit to put out a pulse which turns the bistable gate to the 

"on" state and starts the two second delay.    During the two second 

delay an audible buzzer signal is given to warn anyone in the area 

that the laser is about to fire.    During these two seconds, the output 

pulse circuits are still disabled,  so that no premature firing will 

occur.    At the end of the two second delay, the one second delay is 

begun and the relay driver is turned "on" which enables the output 

pulse circuits.    At the end of the one second delay, the oscillator ".s 

triggered by output pulse 1 and the variable delay is started.    The 

duration of the variable delay can be set for 0-2 milliseconds with 

a 2|i second resolution.    At the end of the variable delay, the 

amplifier is triggered by output pulse 2.    About 0. 5 second later the 

relay driver turns off which initiates the disable circuit.    This 

disables all the circuits for 7 seconds, after which the laser may 

be fired again. 

The relay logic panel shown in Figure (3.8) is a further safety 

precaution.    The logic panel performs the following functions:   In the 

event of an emergency, the oscillator and amplifier power supplies. 
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timing and trigger circuits may all be turned off by a single switch. 

Also,  if the amplifier power supply,  timing or trigger circuit or the 

aluminum table top should become ungrounded, power to the offending 

unit is shut off and the capacitor banks are discharged. 

b.    Operation 

The amplifier performance is determined by measuring the 

input and output energy of the beam.    The ratio   e     Je. is the 
out'   in 

amplifier gain.    The experimental arrangement used to make this 

measurement is shown in Figure (3. 9).    The capacitors serve to 

integrate the photodiode       current so that the height of the pulse 

displayed on the oscilloscope is proportional to beam energy per 

unit area. 

Using this arrangement, the amplifier gain was measured as 

a function of the voltage applied to the flashlamps and also as a 

function of the delay between triggering the oscillator and amplifier. 

It was found that the delay time which produced maximum gain 

increased as the amplifier pumping energy increased.    This result 

is due to the fact that maximum inversion in the amplifier rod is 

reached more quickly as the pumping energy is increased.    Thus 

the oscillator pulse must arrive sooner after the amplifier flashlamps 

have been triggered in order to see the maximum inversion in the 

amplifier rod.    The delay which gives maximum gain varies from 

'-»-ZOO \i. seconds for pumping voltage of 2. 6 kilovolts to -^400 \i 

seconds for pumping voltage of 3. 0 kilovolts.    The amplifier gain as 

a function of the square of the pumping voltage is shown in Figure 



•91" 

Osc. 

Amp 

B.S. 

RD.1 

3 -• •- 

B.S. 

RD.2 

^C 
Oscilloscope 

Fig.   3.9    Expe 
Gain 

rAnental Arrangement Used to Measure Amplifier 



-92- 

(3. 10).    The value of gain given in each case is that obtained with the 

optimum delay.    Saturation of the gain is evident when the pumping 

voltage exceeds 2.8 kilovolts.    At 3. 0 kilovolts the maximum gain of 

11 has been reached. 

The maximum intensity achieved with the amplifier was 

approximately 200 MW/cm   .    This power level however produced 

damage in the amplifier rod in the form of a small chip at the center 

of the exit face of the rod and a bubble about l/2 cm in from that 

surface.    Good quality rubies produced by the Czochralski technique 

are capable of withstanding intensities in excess of 1 GW/cm   .    The 

reason that this rod damaged at much lower power was that it has a 

definite core i. e.   large optical inhomogeniety down the center of the 

rod,  which greatly reduces the damage threshold.    Also the oscillator 

beam has many small diameter hot spots as shown by the near field 

pattern Figure (3. 3) which gives local regions of much higher 

intensity than the average beam intensity.    To avoid further damage 

to the amplifier rod,  a 2:1 inverted telescope was inserted between 

the oscillator and the amplifier.   Also a small area was ground on the 

beam splitter which is before the amplifier.    This ground spot 

scattered the center of the oscillator beam and so prevented light 

from traveling down the core of the amplifier rod.    An aperture with 

diameter slightly smaller than the amplifier rod diameter was also 

inserted before the amplifier.    The purpose of this aperture was to 

prevent light from the oscillator from falling on the beveled edge of 

the amplifier rod and thus avoid any chance focusing of the beam in 
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the amplifier rod.    The combination of these additions were success- 

ful as no further damage to the amplifier rod occurred! 

Whenever a laser beam is directed into a material which 

scatters light coherently in the backward direction (stimulated 

Brillouin scattering is an excellent example) there is some danger 

that the backscattered light will re-enter the laser and cause damage. 

With an amplifier this danger is increased.    The intensity of the 

backward stimulated Brillouin scattered light may be   ^10-20%  of the 

intensity of the laser beam.    When this field passes back through the 

amplifier its intensity is increased by a factor of 10.    Consequently 

the field intensity of the backscattered light when it arrives at the 

oscillator may be as high as the original output from the amplifier 

and can cause damage in the oscillator rod.    Even if no damage should 

occur, there is still another problem caused by the feedback.    After 

the backscattered light has passed back through the amplifier and 

oscillator it will come out again as a new laser pulse, pass back through 

the amplifier and if sufficiently intense, will stimulate for example, 

the second Stokes Brillouin line.    This behavior was observed when 

the laser beam was focused into SF, gas at 10 atmospheres pressure. 

The field oscillated back and forth between the gas cell and laser, 

stimulating a higher order Brillouin Stokes line with each pass.    As 

many as the first 10 Brillouin Stokes lines of SF, were observed by 

use of a Fabry Perot interferometer in this manner.    The oscillation 

continues until the amplifier gain has decreased to the point that the 

laser intensity is  insufficient to stimulate the next Stokes line. 
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Ideally the laser should be isolated from the scattering 

material by a Kerr cell or a Faraday rotator.    Lacking this 

equipment,  another method was used.    A dye cell was placed 

immediately after the amplifier and a 50 nanosecond optical delay 

between the laser and experimental area was introduced.    The final 

arrangement for the oscillator-amplifier system is shown in 

Figure (3.11).    After passing through the amplifier and dye cell, the 

beam is turned by 90 degrees by an arrangement of two prisms shown 

in Figure (3.12).    This arrangement also rotates the beam polarization 

from horizontal to vertical (this is true because the beam polarization 

remains perpendicular or parallel to the plane of incidence upon 

total internal reflection).    The polarization is rotated because 

vertical polarization is desired for the experiment.    The beam then 

travels a distance of 6. 78 m to the spherical mirror.    This distance 

is equal to the mirror radius of curvature so the mirror reimages 

the beam with 1:1 magnification at a position just to the right of the 

double prism as indicated in Figure (3.11).    The laser output is then 

directed into the cell containing the gas mixtures under investigation. 

The total time then required for light to make a round trip from the 

amplifier to the gas cell and back to the amplifier is   ~ 100 ns which 

is approximately the duration of the laser pulse as shown in Figure 

(3. 2b).    Thus the end of the laser pulse has left the amplifier before 

the front of the backscattered pulse has reached the amplifier.    The 

dye concentration in the amplifier dye cell is adjusted so that it 

bleaches when the laser pulse passes through but not when the back- 
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Fig.   3.12    Double Prism Arrangement for Turning Laser Beam and 
Changing Polarization from Horizontal to Vertical 
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scattered pulse passes through.    This introduces enough loss in the 

backscattered beam that it will not be amplified to sufficient intensity 

to stimulate any further scattering. 

C.      Fabry Perot Interferometer 

In this experinru.nt the occurrence of stimulated Brillouin or 

concentration scattering is detected by observing the frequency shift 

from the laser frequency of the backscattered light from the gas 

mixture.    The range in frequency shift which must be observable is 

0. 005 cm"1 (150 MHz) to 0. 03 cm     (900 MHz).    Detection of a 

frequency shift in this range can be accomplished by a plane parallel 

Fabry Perot interferometer (FPP) with spacing between the plates 

on the order of 4-8 cm. 
g 

The general theory of the FPP is well known ,   so this section 

is confined to the consideration of factors which were important in the 

design and operation of the FPP used in this experiment. 

The optical arrangement for use of the FPP is shown in Figure 

(3.13).    The incident collimated beam of light is diverged by lens LI. 

For light traveling in certain directions, the phase shift for one round 

trip of the FPP is an integral multiple of 2ff.    In those directions the 

interference is constructive, and the interference pattern in the 

focal plane of the lens L2 is then a series of concentric rings.    The 
tVi 

diameter of p     bright fringe is given by 

D2   =    Q—-   (p-l + e) (3.8) 
p n^h 
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where n', n are the index of refraction of the air between the plates, 

and outside of the plates respectively, X. is the wavelength of the light 

in vacuum,  h is the plate separation and e the fractional order at the 

center of the ring pattern. 

The resolving power of the FPP, i.e. the minimum frequency 

difference of two monochromatic components which can be resolved, 

is given by 

where F is the instrument finesse which is defined as the ratio of the 

fringe separation to the halfwidtn of the fringe due to a monochromatic 

line.    The fringe separation (free spectral range) is given by 

UKVcp    =   ICTT (3.10) 'FSR        Zn'h 

Each loss mechanism present in the FPP cavity contributes to the 

cavity lifetime and therefore also contributes to the finesse.   The 

finesse   F.   associated with the   i     loss mechanism is related to the 

corresponding contribution to the cavity lifetime  T.   by 

TTCT. 
Fi = OT <3-u> 

The net instrumental finesse is given by 

F"1   =     I F"1 (3.12) 
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The major contributions to the finesse are mirror flatness and 

reflectivity.    For mirrors with  —   surface figure and reflectivity R, 

the associated values of finesse are given by 

^F 2 

FR   «    f^f (3.13) 

Diffraction losses usually play no significant role in determining 

overall finesse.    The diffraction limited finesse is given by 

F
D - ikh <3-14) 

where a is the aperture diameter. 

The Fabry Perot interferometer used in this experiment had 
\ 

quartz plates with  yrr  surface figure,  reflectivity 98%  and plate 

separation of 6 cm.    The relevant parameters for this case are 

(AK)FSR   =    . 083 cm'1 

(3.15) 
FF ^ 100 

FR ^ 150 

FD   ~   1000 

The actual instrumental finesse which depends,  in addition to the 

factors already mentioned,  on mirror alignment and mechanical 

stability of the FPP mounting,  was about 25.    This gave a resolving 

power 
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AK   ä   .003 cm"1   (90 MHz) (3.16) 

The Fabry Perot mounting is ahovM in Figure (3.14).    The main 

housing and end plate were aluminum.    The spacer was made of 

Invar.    One of the quartz plates was held against the spacer by three 

steel ball bearings.    The other plate was held by three phosphor- 

bronze springs.    This plate was aligned to be parallel to the other 

plate by the fine adjustment screws on the phosphor-bronze springs. 

Alignment of the FPP was done by observing the ring pattern 

resulting from illumination by a He-Ne laser.    It is important to 

make the alignment with as little pressure as possible on the quartz 

plates to avoid any deformation which would lead to a reduction in 

finesse. 

D.     Experimental Arrangement 

The first experimental arrangement which W&.S used to detect 

the frequency shift between the laser and the stimulated emission 

from the gas mixture is shown in Figure (3.15).    The collimated 

beam from the laser entered from the direction indicated by the 

arrow.    Approximately 8%  of the beam was split off by the glass 

beam splitter BS1.    The polarization of this light was rotated from 

vertical to horizontal by the z-cut quartz l/2-wave plate.    It then 

reflected through the prism and passed through a calcite polarizer 

which was set to transmit horizontally polarized light.    The 

remainder of the beam was focused by lens L3 (focal length 15-4C cm) 

into the gas mixture.    If the beam intensity at the focus of lens L3 
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was sufficiently high to reach threshold for the stimulated scattering 

process,  the intensity of the backscattered light was on the order of 

10% of the incident laser intensity.    About 8% of the backscattered 

beam was split off by beamsplitter BS2 and recombined with the laser 

light which passed through the polarizer.     The total beam was then 

diverged by lens L2 and passed through the FPP.     The interference 

pattern from the FPP was focused by lens L2 through the crossed 

polarizers onto the Polaroid film.    A typical example of the results 

obtained is shown in Figure (3. 16).    The interference fringes from the 

laser light appear in quadrants 1 and 3 of the crossed polarizers and 

the fringes from the backscattered light appear in quadrants 2 and 4. 

The crossed polarizer plate was made from squares of Polaroid 

NH32 sheet polarizer.    This material is a neutral color linear 

dichroic polarizer.    The transmission for an unpolarized beam is 

32% and the extinction transmittance is 0. 005%.    The Polaroid film 

used was type 413. 

The frequency shift was determined from the difference in 

diameter of the interference fringes which were due to the laser and 

the stimulated backscattered light.    This measurement will be 

discussed later. 

An estimate of the laser intensity which is required to produce 

stimulated scattering on the gas mixtures can be made as follows. 

In order to reach the threshold for stimulated oscillation in the gas 
12 

mixture the Stokes wave gain coefficient must be on the order of ten 

i. e. 

E(Uc)   =   E     .     (CJC) e10 (3.17) S noise    S 
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Fig.   3.16    Interference Fringes from 4 cm Fabry Perot Etalon 
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where   E •     ((Je)   is the amplitude of the noise field at the Stokes noisea 

frequency   uu.       The noise field arises from spontaneous scattering 

from zero point or thermal fluctuations in material mode.    This 

observation can be used to make an estimate of the laser intensity 

required to produce stimulated scattering.    Thus 

gILz   =   10 (3.18) 

where   g   is the Stokes field gain coefficient,    I.   is the laser field 

intensity and   z   is the path length over which gain occurs.    The 

maximum gain for the concentration mode as shown in Figure (4. 3) 

is 10       cm/W.    Thus for   z   "^ 1 cm, one must have   IT   ^ 10    W/cm   . 

/      2 For a laser output of 100 MW/cm    with a beam cross-sectional area 
2 g 

of 1 cm  , the laser power is 10    W.    With a beam divergence of   2 mr, 

the beam area at the focus of a lens with 20 cm focal length is 

-3       2 ^ 10      cm  .    Therefore the laser intensity at the laser focus is 

11/2 I.   '">' 10    W/cm     which is the proper magnitude to produce stimulated 

Stokes wave oscillation. 

Using the experimental arrangement shown in Figure (3.15), 

stimulated scattering was successfully observed in gas mixtures 

with Helium concentrations up to 60%.    However the laser intensity 

required to produce stimulated scattering in the gas mixtures with 
.2 

higher Helium concentrations was approximately 200 MW/cm    in the 

collimated beam.    As discussed earlier,  this intensity produced 

damage in the ruby a.mplifier rod.    Consequently it was necessary to 

find a way to produce stimulated scattering with a reduced laser 
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power.    Certainly if a field with frequency   us   could be introduced 

into the gas cell traveling in the backward direction, the gain required 

to amplify this Stokes field to the oscillation threshold would be less 

than the gain required to build up to oscillation from the noise field. 

Of course an essentially monochromatic field with frequency   tJc   *8 

not available,  but it is easy to produce a field with a broad frequency 

spectrum beginning at the laser frequency and extending on the Stokes 

side.    When such a broad spectrum field traveling in the backward 

direction is present in the gas mixture simultaneously with the laser 

field, the gain of the medium will amplify the portion of the broad 

spectrum which is at the frequency   (Jc-    T^16 broad source effectively 

increases the amplitude of E (uo)»    A broad spectrum of the r noxse* S' r 

nature described can be produced by stimulated Rayleigh wing 

scattering in liquids containing molecules with a large anisotropy in 

the polarizibility (large quadratic D.C.  Kerr effect).    Examples of 

such liquids are CS2, benzene and many of its derivatives.    A simple 

description of Rayleigh wing scattering can be given as follows. 

Consider a fluid composed of cigar-shaped molecules which have a 

different value for the polarizibility parallel and perpendicular to the 

axis.    Now suppose there are two light fields present:   an incident 

field with frequency   Ur    and a scattered field with frequency   Ug 

close to   M- .    The two field will interfere and the resultant field is 

modulated at the difference frequency   UT   " Wg«    ^ t*16 characteristic 

molecular orientation time   T   is not too long, the molecular 

orientation and therefore the polarizibility can follow the modulation 
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at u^ - Uc-    This process results in a large material polarization at 

the frequency us which leads to enhancement of the scattered wave 

intensity.    The frequency dependence of the Rayleigh wing gain is 

given by 

G(u)s) (wL " L:g)T 

2Gmax       "     1
 

+
 K-^

2T 

where G is the gain at (M    -Ur.) T = 1.    The value of G depends max 6 ^  L      S max      r 

upon the ellipticity of the incident light and upon the scattering angle. 

This gain produces a Stokes shifted Rayleigh line which has been 

13 observed by several authors     and a theory which describes most of 

14 the experimental results has been given by Chaio and Godine 

13 Foltz et.   al.      have also observed that excitation with linearily 

polarized light produces in the forward direction a diffuse Stokes wing 

of the same polarization with the maximum intensity at u!» •    This 
15 

case has been treated by Chaio,  Kelly and Garmire    .    As a result of 

Stokes-anti Stokes coupling,   scattering in the near forward direction 

was shown to be dominated by the degenerate light by light scattering 

with no shift in the scattered light frequency. 

Several liquids were investigated for use in this experiment 

(CS?,  nitrobenzene,  acetone,  aniline,  and quinoline).    Nitrobenzene 

produced the most satisfactory results.    For nitrobenzene T= 4. 78 x 

10       sec.    The frequency dependence of the Rayleigh wing gain for 

nitrobenzene is shown in Figure (3. 17). 

The experimental arrangement which was used is shown in 
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Figure (3.18).    The collimated linearily polarized beam from the 

laser entered as indicated by the arrow.    It passed through the glass 

beam splitter BS1 and was focused by lens L.3 (focal length 15-40 cm) 

into the gas cell GC.    After passing through the gas cell the beam was 

recollimated by lens L4 (focal length 20 cm) anc then focused by lens 

L5 into the liquid cell LC w^ich contained nitrobenzene.    The laser 

beam self-focused in the nitrobenzene and produced strong stimulated 

Brillouin scattering   with a frequency shift of 0. 26 cm      in addition 

13 to the stimulated Rayleigh wing scattering.    Denariez and Bret 

have investigated the stimulated scattering in nitrobenzene.    Taey 

found that the Brillouin gain is 'MO      cm/W while the maximum of the 

Rayleigh wing gain is  <"*- 5 x 10      cm/W.    However the Brillouin time 

-9 -12 
constant is  ^ 10      sec compared to ^ 10        sec for the Rayleigh wing. 

Thus the Rayleigh wing reaches steady state conditions before the 

Brillouin mode so that both stimulated processes are observed.    The 

backscattered light from the nitrobenzene was recollimated by lens 

L5.    Approximately 8%  of this beam was reflected by the glass beam 

splitter BS2.    This portion of the beam was directed around the gas 

cell by the prisms Prl, Pr2.    Its polarization was rotated from 

vertical to horizontal by the half wave plate P.    The remainder of the 

backscattered light from nitrobenzene passed back into the gas cell 

where it interacted with the gas mixture and the laser beam in the 

focal volume of If      L3.    Approximately 8%  of the beam traveling in 

the backward direction out of the gas cell was reflected by the beam 

splitter BS1 and recombined with the portion of the light from the 
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liquid which had traveled around the gas cell.    The combined beam 

was then analyzed by the FPP in the manner described earlier,    A 

typical example of the FPP fringes photographed with this arrangement 

are shown in Figure (3.19).     The fringes which appear in quadrants 

1 and 3 are due to the light from the nitrobenzene which has traveled 

around the gas cell.    This is then the input spectrum in the backward 

direction into the gas cell consisting of the nitrobenzene Brillouin 

line as indicated in Figure (3.19) and the Rayleigh wing.    The Rayleigh 

wing intensity is too low to appear on the film,   in addition to which it 

is much broader than the free spectral range of the FPP and so would 

appear only as a general fogging of the photograph.    The FPP fringes 

which appear in quadrants 2 and 4 give the output spectrum from the 

gas cell.    This consists of the nitrobenzene Brillouin wave which has 

simply passed through the gas cell,  a portion of the incident laser 

beam which has been reflected from the gas cell window and the 

stimulated line from the gas mixture.    By monitoring the spectrum 

input to the gas cell one can be certain that the line,  which is 

attributed to the gas mixture,  was not by some process coming from 

the nitrobenzene. 

This technique of using a broad spectrum to assist the 

oscillation of a low gain process has to the author's knowledge never 

been used before.    Its effectiveness is illustrated by the result that 

the laser intensity required to produce stimulated Brillouin scattering 

(SBS) in SF, gas at a pressure of 5 atm dropped from 60 MW/cm    in 

the collimated beam when the beam was simply focused into the gas to 20 

MW/cm    when this amplifier technique was used.    The reduction in the laser 



-114- 

ÜJ 

X 
s 
><  Q 

NOT 
REPRODüClBLt 

I 

| 
U 

Im 
c 

c 

a 
o 
« 

0« 
>. 

•s 
i 

ff 
U 

« SP 
u  4 

er- 

CO 



-115- 

power required to reach stimulated oscillation utilizing this technique 

was the singular factor which allowed completion of the experiment 

with the existing laser system.    It was then possible to produce 

stimulated scattering in gas mixtures with Helium concentration as 

high as 90%. 

Since the peak intensity of the Rayleigh wing spectrum occurs 

at a shift of 0.111 cm     it was necessary to investigate whether using 

the amplifier technique introduced any pulling of the frequency of the 

stimulated scattering in the gas mixture.    This was done by studying 

the frequency shift of the stimulated line in gas mixtures with low 

Helium concentrations.    In these mixtures the laser intensity was 

great enough to produce oscillation by simpling focusing into the gas 

mixture as well as with the amplifier technique.    The shift in frequency 

was the same in both cases within the accuracy of the measurement. 

E.     Gas Handling Equipment 

The system diagrammed in Figure (3. 20) was constructed to fill 

the gas cell and measure the pressure of the gases contained in the 

cell.    All of the tubing used was l/4 inch outer diameter copper 

tubing.    Tubing connections were made with Gyrolok fittings.    These 

fittings proved leak free at pressures as high as 1200 psig.    Before 

filling, the entire system was evacuated by a Precision Scientific 

Model 25 vacuum pump.    System vacuum was monitored by an NRC 

Model 501 thermocouple gauge.    After evacuation,  the SF, or Xenon 

gas was slowly leaked into the system until the desired pressure was 
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Fig.   3. 20    Gas Handling System 
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reached.    System pressure was measured by the two pressure gauges 

indicated in Figure (3. 20).    Both gauges were made by U. S. Gauge 

and were purchased from Matheson Gas Products.    The low pressure 

gauge was a high accuracy gauge, accurate to l/2%  over the entire 

scale.    The gas mixture was made by slowly leaking Helium gas into 

the system until the required total pressure was reached.    At least 

one hour was allowed for complete mixing to take place before any 

measurements were made.    There was no observable change in the 

scattered light spectrum when longer mixing times were allowed. 

The Helium gas used in this experiment was supplied by the 

U. S.  Navy.    The Xenon and SF, were purchased from Matheson Gas 

Products.    The SF, is inexpensive and so was simply discarded when- 

ever necessary to change concentration.    However Xenon gas is quite 

expensive and so it was desirable to trap and recycle the gas.    This 

can easily be done since Xenon freezes at 161 degrees Kelvin.    The 

reservoir shown in Figure (3. 20) was immersed in liquid nitrogen 

(77 degrees Kelvin) and time was allowed for the system pressure to 

come to equilibrium.    At this time all of the Xenon was frozen in the 

reservoir.    The vapor pressure of Xenon at 77 degrees Kelvin is less 

than 1 Torr.    The Helium gas could then be pumped out of the system 

leaving only Xenon.    When the reservoir returned to room temperature 

the pure Xenon could be reused. 

F.     Data Analysis 

The frequency shift of the stimulated scattering in the gas 

mixture from the laser frequency can be determined from the Fabry 
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Perot fringes.    The method of that analysis is given in this section 
g 

following the discussion given in Born and Wolf . 

The condition for constructive interference which gives the 

bright fringe is that the phase shift Ö of the light in making a round 

trip of the FPP cavity is an integral multiple of 2jr .    This condition 

is expressed by 

6           Zn'hcosg'    ,   A ..  ... 
m   =   2i   =     X    +  * <3-19) 

where n' is the index of refraction of the medium between the plates, 

h is the plate separation, 0' is the angle of reflection, and 4 is the 

phase change on internal reflection;   m is the integer order of the 

interference.    For 0 = 0, the expression on the right is not in general 

an integer.   So one may write 

m' + e   =  -^ + | (3.20) 
A. If 

where m1 is the integer order of the innermost ring and e < 1. 

The integer order of the p     ring out from the center of the interference 

pattern is m' - (p -1) and the diameter of this ring is given by 

D
2   =    la^L (p-i + e)     . (3.21) 
P n h 

Suppose now that the light field incident upon the FPP consists of two 

essentially monochromatic components with wavelengths X.  2 which 

are not too far apart.    Then equation (3. 20) may be written for each 

component.    In terms of spectroscopic wave number   K = r 
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mi,2 + el,2   =   2n\2+ |       ■ <3-22) 

Subtraction gives the result 

1 M K\-KZ   =   2^h K-m^ + ej-eg)   . (3.23) 

The value of  m' -m', ,  which is the number of orders overlap between 

the two patterns,  can be determined by changing the plate separation. 

In this experiment, the frequency shift is less than the free spectral 

range of the FPP so   m' -m', = 0.    The difference in the fractional 

orders   e, - e,   is obtained from measurements of the ring diameters. 

If  Xj ^ X, , the ring diameters for each component are given by 

Dl2,2p   =   A(p-l + elj2) 

where (3.24) 

. 4n'Xf2 

A   =   —5— 
n^h 

Subtracting the square of the diameter of successive rings for each 

component gives 

Di2
>2p+i-

Df,2p = A   • (3'25' 

Subtracting the square of the diameter of the rings due to each 

component for the same order of interference gives 

Dl2p"D2p   =   A<el-e
2) (3-26) 

Note that the right hand side of both equations (3. 25) and (3.26) does 

not depend upon p so both of these subtractions can be carried out for 
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many orders of interference.    This will give good average values for 
2 2 

A and D.     - &2   >   Denoting the average value by a ——,  the difference 

in fractional orders is given by 

.2        _2 
e. - e,   =    "D"    - D: (3.27) 12 Ip        2 p \ i 

—s— 
The frequency shift is then given by equation (3. 23). 

The FPP ring diameters were measured from the Polaroid 

photographs taken in this experiment to the nearest 0. 0001 inch using 

a traveling microscope.    Usually 4 or 5 rings were clearly visible so 

the averaging described above was done over this number of fringes. 
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CHAPTER   IV 

NUMERICAL   CALCULATIONS.    EXPERIMENTAL 

RESULTS  AND   DISCUSSION 

A. Introduction 

In this chapter, the gas transport coefficients are discussed. 

The primary interest in studying the transport coefficients is to provide 

a means by which accurate calculations of them may be made for the 

gas mixtures under investigation.   It is necessary to understand these 

calculations in order to know their limitations in describing the 

physical system.    The various transport phenomena and the relations 

between the coefficients can be obtained from the simple kinetic 

theory.    However to obtain accurate values one must resort to the 

rigorous kinetic theory of gases in which the solution of the Boltzmann 

equation is given by the Chapman-Enskog perturbation procedure. 

Since the gas mixtures under investigation are at moderate 

pressures («- 5-100 atm), corrections to the ideal gas equation of 

state must be included in the calculations. 

The experimental results are presented and compared with the 

predictions of the theory which was developed in Chapter II. 

B. Calculation of Gas Transport Coefficients 

1.    Simple Kinetic Theory 

The phenomena of diffusion, viscosity and thermal conductivity 

are all physically similar in that they involve the transport of some 

physical property through the fluid.    Diffusion is the transfer of mass 

due to a concentration gradient, viscosity is the transfer of momentum 
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due to a velocity gradient,  and thermal conductivity is the transport 

of thermal energy resulting from a temperature gradient.    The 

basic relations between these coefficients and their dependence on 

temperature,  pressure, mass and size of the gas molecules can be 

easily determined from a simplified kinetic theory.    In this simple 

kinetic theory,  all the gas molecules are assumed to be rigid,  non- 

attracting spheres, all traveling at the same speed V with an equal 

number traveling parallel to each coordinate axis.    In this simple 

approach, the transport coefficients can be expressed in terms of the 

mean free path    ' = fT    where R is the collision rate.    Following this 

approach, we find the results for the diffusion coefficient,  viscosity 

and thermal conductivity respectively. 

■/■. 
,3 

D        lvf=   >-E   =   A   ^n 
3 PCv P/ 

r,   =   ^NrnVF  =   pD   =   B   ^^T (4.!) 

X   =   iNc   VF=   !^   =   C   ^ 
3       v m <i 

(T 

P 
where   p = Nm = -r—    is the density and   cr   is the molecular diameter. 

KT 
The constants A,  B, C depend upon units and are of no interest here. 



-124- 

2.    Rigorous Kinetic Theory 

a.    Chapman-Enakog Solution of Boltzmann Equation 

The rigorous development of the kinetic theory of gases is 

based on knowledge of the molecular distribution function f(r, v,  t) 

which represents the number of molecules at time t in a volume of 

phase space at (r,  v).    When the system is in equilibrium, f reduces 

to the Maxwellian distribution.    When the system is not at equilibrium, 

the distribution function satisfies the Boltzmann equation.    Under the 

conditions that the deviation from equilibrium is small, f is nearly 

Maxwellian and the Boltzmann equation can be solved by a perturbation 

method developed by Chapman and Enskog.    The resulting solutions 

are then used to obtain expressions for the transport coefficients. 

With this approach, all of the transport coefficients are expressed in 
It    a) 

terms of a set of integrals   J2.;*    , which explicitly involve the 

dynamics of the molecular encounter and thus the intermolecular 

force law.    For collisions between molecules of type i and j, these 

integrals are defined by 

^«,8)   = ^   ,.    B \       \   e    1J v..       (l-cos I 0)bdbdY,, 
1J 0       0 

In these integrals, [i.. is the reduced mass of the colliding molecules 

i and j,  9 is the angle by which the molecules are deflected in the 

center of gravity coordinate system, b is the impact parameter,  and 

v . is the reduced initial relative speed of the colliding molecules 

given by 
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^ij   ={ ^Jj 
2knT    «ij VB 

where   g..   is the initial relative velocity of the two molecules.    The 

most satisfactory calculations of   flj ' 8'   are those made on the basis 

of the Lennard-Jones (6-12) potential which describes reasonably well 

the interaction between spherical,  non-polar molecules. 

The Chapman-Enskog theory considers only binary collisions 

so the results are not applicable at densities sufficiently high that 

three body collisions become important.    The theory also assumes 

that the molecular mean free path is small compared to the dimensions 

of the container,  so that surface effects are not important.    The 

Chapman-Enskog theory is therefore most useful for describing the 

properties of a dense gas. 

Strictly speaking, the Chapman-Enskog theory applies only to 

monatomic gases.   Since inelastic collisions occur between molecules 

with internal degrees of freedom, the kinetic energy is not conserved 

upon collision, although clearly mass and momentum are conserved. 

Consequently, the viscosity and diffusion are not appreciably 

affected by the presence of internal degrees of freedom, and the 

theory of monatomic gases may be applied to polyatomic molecules 

with success, provided the molecules are approximately spherical. 

However,  the thermal conductivity is significantly affected by 

internal degrees of freedom.    For a monatomic gas,  the thermal 

conductivity is related to the viscosity by 
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15   R 
4   M X   =   -r r-. r] 

where M is the molecular weight of the gas and R is the gas constant. 

This relation has been confirmed experimentally. 

The specific heat and bulk viscosity of the gas are also affected 

by the transfer of energy to internal degrees of freedom of the 

molecules.    The magnitude of contribution of the internal degrees of 

freedom depends of course on the frequency at which the measurement 

is made.    This point is discussed in greater detail in connection with 

the calculation of the specific heat.    The contribution of the internal 

degrees of freedom to the thermal conductivity can then be given by 

a correction term which depends upon the specific heat. 

15   R       r4    cv   ,    31 ,A   3v 
T   M71   ^15  -g-   +   5] (4.2) 

This formula was first proposed by Eucken and gives good agreement 
/%, 3 

with experimental results.    For a monatomic gas   c     =   7 ^   an" ^e 

Eucken formula reduces to the thermal conductivity for monatomic 

gas. 

b.    Transport Coefficients in Chapman-Cowling Integral Form 

In this section, the transport coefficients are presented in terms 

of the Chapman-Cowling integrals   Jf.'   '.    These results may be 
1J 2 

derived following the work of Chapman and Cowling  , and also 

Hirschfelder,  Curtiss and Bird .    This calculation is quite involved 

and will not be discussed here.    We present only the results which are 
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necessary for the calculation of numerical values for the transport 

coefficients of the gas mixtures under consideration.    All of the 

results presented here are those which arise from the first order 

approximation of the Chapman-Enskog solution of the Boltzmann 

Equation.    The values of the Chapman Cowling integrals (CCI) which 

are used are those calculated for the Lennard-Jones (6-12) potential. 

The parameters which describe this potential are indicated in 

Fig.  4.1.    The values of the potential parameter e   and collision 

diameter   cr   are given in Table 4-1.    For a gas mixture,  the collision 

diameter is given by 

^12   =   I^V0^ 

and the potential parameter is 

ci2 = yHi^z 

The CCI are calculated as functions of the reduced temperature 
>:«        "kg 

T     =  —— , where k« is the Boltzmann constant.    The transport 

coefficients are given in terms reduced integrals   "   = TTr-a:^ anhere 

The values of T   and the CCI of interest I fyA      (T^ , flj^v '  (T2), 

dfy 2)S!e(T*2), ^^(T^) )   are also given in Table 3-1.    Certain 

ratios of the CCI appear frequently.    They are 

B* = [sd^*-id1* **]/&*"* 
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•- r 

LENNARD - JONES   (6-12) POTENTIAL 

Fig.  4.1    Lennard-Jones (6-12) Potential Versus Distance Between 
Molecules 
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These values are also given in Table 4-1.    For calculations pertaining 

to the mixtures, it is convenient to introduce a parameter   M12 given 

by 
M 

2M1M2 

12    =   M1+M2 

where M..,  M^ are the molecular weights of the component species. 

(1)    Viscosity 

To a first approximation,  the viscosity of a pure gas is given by 

-      N/M.T ' 
-3 1 gm n.   =   2. 6693 x 10  "       ■}    7;   -,>,,<       —t*^— 

'x o-   n.^  '   ' cm, sec 
(4.3) 

i    i 

Thia result may be used to obtain the viscosities of both pure gases 

rj. ,  r)2 •    To obtain viscosity of the mixture,  it is convenient to 

introduce a viscosity   rh?   which is given by Equation (4. 3) with i 

replaced by 12.    The viscosity of a binary mixture is then given by 

1 
•mix = x   Hr n     1 

l + Y  /X 

+ Z 
ül (4.4) 

where 

X     =   d-c')2   +   2c'(l-c')   +   c^ 
1 ^ ^iz 12 

5 A12 

2        2 
(1-cM2   ™J> , 2(i-c')c' (MlfM2) t . ^12 

'1 ^12 
( >nvir  \/i ) (^   „   ) 41^1^2 ^1^2 

c'        M, 
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3     * 2   Ml d-C)    (jf) + 2c'(l-c') ^JI^ZJ      ,^12    Ü12.     . 
4M1M2 ^1 ^2 

VM 
1 

(2)   Thermal Conductivity 

For a pure gas the thermal conductivity is given by 

X.   =   8292.5 
VT/M." 

r2 ^(2,2)*     cm sec 0k 
erg_ 

i      i 

(4.5) 

For the polyatomic   SF,   molecules,  c    = 3R so   this result must be 

multiplied by ■?   (Eucken correction).    The parameter   X.?   xs again 

given by the expression for   \.   with   i = 12.    The thermal conductivity 

for a gas mixture is given by 

whe re 

! H-Yx/Xx 

V    .     =   XX ^    1+2X   ^ 
(4.6) 

mix 

x     =   d-c')2   +  2c'(l>c')   +  c£ 
W12 

Y     =   (l-C)2 ud)   +   2c'(l-c') U(Y)   +   c± u(2) 
x        Xj x12 \2 

Zx   =   (l-c')2U(1) + 2c,(l-c,)U(Z) +c'2U(2) 
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2 

U        -   15 A12     I (TB12 + l)M:+Z^Ä l2        -      mlUZ 

n«2)   -  ±A'   -i-^B*   +n   M2   +  i   (M2"M1)2 
U ~   15A12     \Z{5ai2 + l)   M~   +   2      MjM, 

2.     . 2 
UCY)  .    i.A.   f(Ml + M2M   N u        "15 A12 \   4M.M2    /  \1 

iL     1-/12«*   , n iq ■ T2(TBi2 + 1) 

5      .12 -*       ,.   <M1-M2)Z 

32.A;2
(5
 

12   )   ^^ 

rjiZ)  .  ± A*    r(Ml + M2)2   .V   .  ^ . ,1       1/12 B*    . n U        -   15 A12   I     4X1^2      {~       V ^ J      12 {T B12 + 1' 

(3) Coefficient of Diffusion 

The coefficient of diffusion for a binary mixture is given by 

2.628 x 10"3 VTVM,, 2 
      Ifc    cm .A  _. 
 Z ni\ m   *   "ITT <4-7) 

p'i2ßi7 * (V 

where P is the pressure in atmospheres. 

(4) Thermal Diffusion Ratio 

The thermal diffusion ratio for a binary gas mixture is given 

in first approximation to be 

k     =   CJl-c')    s(1)(l-c')-s(2)c' (6 *   . 8) 
KT 6\12 

X\+Y\ 12 
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where 

(1)        Ml + M2   \Z 15     t
M2"ML     , 

s   " "^ s " 4A;2 
( 2 V 

(2)        M2 + M1   \12        ^5^    Mj-Mz. 

Choice of the correct sign for   k—   requires some attention. 

When a mixture of gases with large, heavy molecules and small light 

molecules is placed in a thermal gradient, the lighter molecules 

diffuse toward the warmer regions   .    The concentration gradient, 

which is established by thermal diffusion,  is opposed by ordinary 

mass diffusion which tends to equalize the composition, and, in time, 

a steady state is reached in which the opposing influences of thermal 

and ordinary diffusion balance.    Then, ignoring pressure gradients, 

the concentration diffusion equation (2. 29) becomes 

|^  =   D [V2 c + -^ 72T]   =   0 

where c is the mass concentration of the light gas (Helium). 

Integration over an arbitrary volume of the mixture and use of Green's 

Theorem to convert to a surface integral gives 

k„ I (7c +  -!jr yT) •  d7 =   0 

which implies 

k 
yc  =  - ^vT 
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Thus the thermal diffusion ratio kT must be negative so that the 

concentration of the light molecules increases as the temperature 

increases. 

The values of the various transport coefficients for the pure 

gases are given in Table 4-1,  for the He-SF, mixtures in Table 4-3 

and for the He-Xe mixtures in Table 4-3. 

3.    Polarizibility and Specific Heat of the Gas Mixture 

The value of the molecular polarizibility for Helium was obtained 
3 

from Dalgano and Kingston   and the values for Xenon and SF, were 

4 obtained from Landolt-Borstein  .    The values of the polarizibility 

are given in Table 4-1.    The average molecular polarizibility of the 

mixture is given by 

a  =   (l + c1) a. + c'a. 

It is a well known result from kinetic theory that the heat 
3    NkB capacity at constant volume c    for a monatomic ideal gas is  ■? ■ , 

V 1   NkB 
which is due to the contribution of -^ —-—  from each of the three 2     p 

translational degrees of freedom.    For a polyatomic molecule the 

specific heat depends on the frequency at which the measurement is 

made.    For frequencies less than  — , where Tn is the rotational 
TR R 

relaxation time (the time which is required for a molecule to change 

its rotational energy) the three rotational degrees of free will each 

1    NkB contribute   -r  =•  to the specific heat.    Similarly,  for frequencies 
&      p 

less than  — . where   T     is the vibrational relaxation time, the T    ' v 
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vibrational modes (fifteen for SF,) can each take up energy and thus 

contribute to the specific heat. 

The time between collisions T    can be calculated from kinetic c 
5 

energy considerations with a knowledge of the gas viscosity   p. 

H x 10       sec 
Tc   "   12.66 P(atm) 

For SF/ at 5 atm, T    ä 10       sec.    A value for the rotational relaxation 

time   TR = 2. 5 T   estimated from the theory of Sather and Dahler    has 

given good agreement with measurements of sound attenuation in SF, 

by Holmes and Stott  .    Thus for frequencies less than 5000 MHz the 

rotational degrees of freedom contribute to the specific heat. 

8 7 O'Connor    and Holmes and Stott    have shown however that the 
3 

vibrational relaxation time   T   '"w 10    T   and the experimental results v c 

show that for frequencies above 30 MHz the vibrational degrees of 

freedom do not contribute to the specific heat. 

The frequencies of the material excitation in this experiment 

are ~ 100-500 MHz as will be shown later.    In this region the specific 
NkB 

heat at constant volume for the SF, is   3—-—  from the 3 translational 6 p 

and 3 rotational degrees of freedom.    The specific heats for the 

He-SF/ mixture are 

c        .      =   (3 NCTr    +  "I N^ )   -2 v mix        x       SF^       2    He     p 

NkB 
C —      C T     »•■■—■" 
Pmix vmix p 

For the monatomic Xenon gas of course these considerations do not 
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3   ^B apply and   c    = ■*■   ——— . rr ' v      2      p 

The bulk viscosity   £   of the polyatomic molecule is also related 

to the transfer of energy to internal degrees of freedom.    The bulk 

viscosity is related to relaxation times by 

N1il L c(i) 
c 

V 

2        £       v       £ 

M) ,. where   c       is the contribution of the particular degree of freedom to 

the specific heat per molecule c  .    For SF, at 5 atm pressure   J = . 34 rj. 

For Xenon, the bulk viscosity is zero since there are no internal degrees 

of freedom. 

One might reasonably be concerned that the addition of Helium to 

the SF, would substantially decrease the relaxation times and allow 

vihrational contributions to enter the specific heats,  thermal conductivity 

and bulk viscosity.    However the recent investigation of spontaneous 
o 

scattering from the He-SF, mixtures made by Gornall   et. al. indicate 

that the vibrational degrees of freedom are not in fact excited. 

4.   Derivatives of Thermodynamic Parameters 

The expressions which were used to calculate the derivatives of 

the thermodynamic parameters which appear in the various gain 

expressions are presented in this section.    These results were 

calculated using the ideal gas law  P = Nk^T.    Extensions of these 

forms to include corrections due to the non-ideality of the gas are 

given in Section (C2).    We need to know the variation of mass density 

with temperature and pressure, the variation of the chemical potential 
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with concentration and the variation of the dielectric constants with 

T,  P,  and c.    These results are given as follows 

i2£\ o 1 
vaP'T,c "   NkBT 

= T 
VT 

{dT}P,c =    -aTP T 

^ac'p, T 

Z , 
P   (m2 

Nm.i 

-ir^) 

m2 

/iüv 
kBTp 

V  = v(t)a,c -^ 

*dc'P,T        c(l-c)Nm1m2 

where v™,  v   are the isothermal and adiabatic sound velocities 
r      s 

respectively and Cp 

Y   =   T v 

47r(N1a1 + N2a2) 

^JP'TJC   " NkBT 

_   4ffP (a2"al) 
(dc'P,T Nm1m2 

(rdT'P,c    ' T 
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C.      The Equation of State 

1,    Virial Expansion 

The well known equation of state for the ideal gas 

P   =   NkBT      , 

needs some correction even at atmospheric pressure.    The virial 

equation of state describes these corrections as a power series 

expansion in the number density 

l + B(T)(^-) + c(T)(^-)2 + ... (4.9) 
D a a 

where N    is Avagadro's number and B(T), c(T) are the second and 
ft 

third virial coefficients. 

From the statistical mechanical expressions for the virial 

coefficients, it becomes evident that the second and third coefficients 

represent deviations from ideal behavior when collisions between two 

and three molecules become important.    As the pressure increases, 

more virial coefficients must be included.    As an indication of the 

contribution of the second and third virial coefficients for the gases 

of interest, the following results are found at O'c 

SF, at  10 atm,   rjr—;  =   1 - 0. 12 + . 005 6 '    Nk-jT 

Xe    at   10 atm,   TS~~   =   1 - 0. 06 + . 0008 NkBT 

He   at 100 atm,   Nk
P T   =   1 +   . 05 + . 002 
B 
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The third virial coefficients are not significant in this work and this 

is consistent with the calculations of the transport coefficients which 

considered only binary collisions.    It is perhaps interesting to note 

that the sign of the second virial coefficient correction is different 

for the heavy gases and for Helium.    This result is due to the fact 

that the interaction between the heavy molecules is dominated by the 

strong attractive part of the potential.    The attractive potential for 

the Helium atoms is weak and thus the atomic interactions are 

dominated by the excluded volume effect due to the short range repul- 

sive part of the potential.    In mixtures with a 10:1 ratio of Helium to 

heavy gas number density, at pressures low enough that the third 

virial coefficients do not contribute significantly, the ideal gas law 

is not a bad approximation. 

For the gas mixture, the second virial coefficient is given by 

B(T)m.xture   =   (l-c')2B1(T) + c|2B2(T) + 2c'(l-c')Bl2(T) 
(4.10) 

where B.,  B, are the virial coefficients calculated from the potential 

functions for molecules of type 1 and 2 and B^ is calculated from the 

potential function which characterizes the interaction between the two 

molecules. 

The virial coefficients are calculated from the intermolecular 

potential   ^ (r) where r is the molecular separation.    The second 

virial coefficient is given by 

oo 

B(T)   =   -ZTT   Na    J[e-^r)/kT.l]r2dr 
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Numerical    alues for the reduced second virial coefficients  B    given 

by 

B*        -S- 

Bk   =   T   k(^I-) K dT   k 

2 3 
bp   =   — TT   Na tr     (second virial coefficient for hard sphere 

molecules) 

for the Lennard-Jones (6-12) potential. 

♦<r)   =   4e[(f)12-^)6] 

have been given by Hirschfelder Curtiss and Bird .    The relevant 

values for the gain calculations are given in Table 4-2. 

2.    Non-Ideal Gas Corrections 

The non-ideal gas corrections are included in the calculations 

by observing that there are a set of gas parameters which are more 

or less fundamental.    These parameters are fundamental in the sense 

that all of the other gas parameters, thermodynamic derivatives and 

transport coefficients depend upon the values of these fundamental 

parameters.    Thus if these fundamental parameters are corrected 

for the non-ideal behavior of the gas mixtures,  the corrections to 

all the remaining parameters and transport coefficients will be made 

automatically. 

These fundamental parameters are the pressure (or number 

density),  isothermal coefficient of expansion   a™,,   specific heats at 
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constant volu/ne and a constant pressure and the isothermal sound 

velocity.    The non-ideal gas corrections for these parameters can 

be derived from the virial expansion Equation (4. 9) using the 

thermodynamic expressions for the various parameters.    The 

derivation is straightforward and will be omitted and the results for 

the gas mixture given as follows 

B P B 

v B v 

p     =  NV   T [1 + ^aiä] ;     N   =  -^[1-%^] 
D v ^B1 v 

i      Q""" I B,        /'v 
L   /ÜX\ JL   ri 4.       1 mix^ -1 

aT    " ^ V9T'P   =   T   L1 ■•■    , x „        /~J 

v 1 + B    .   / v 
mix' 

2B    . B,     . a     /     mix .      2rmxv   Nk c       =   c    - ( T )   -r— 
v v K 

Cp    =   cp 
o 2 mix      Nk 

v 2     =      S      [1+   —SÜÄi 

where   v    =  rS1, P. is the partial pressure of the heavy gas and c    , 

Cp are the ideal gas values of specific heat.    Since the value of N 

appears in   v , the expressions for the number density must be 

evaluated in an iterative fashion. 
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D.     Numerical Calculations and Experimental Results 

1.    Inttoduction 

The values of the gas transport coefficients and other relevant 

parameters for the gas mixtures have been calculated by use of a 

computer from the expressions presented in the preceding sections. 

The calculations we :'e made for the mixtures which were investigated 

experimentally.    For the He-SF, mixtures, the partial pressure of 

SF, was 5 atm and the Helium concentration was increased by adding 

Helium.    For the He-Xe mixture, the Xe partial pressure was 8 atm. 

The values for the He-SF-. and He-Xe mixtures are presented in 

Tables (4-3) and (4-4) respectively. 

These values of the transport coefficients and gas parameters 

were then used to calculate the values of g«, g , g— given by 

Equations (2. 62), (2. 65) and (2. 69) respectively.    The value of g_  _(w) 

was calculated for frequency shifts from 0 to 1200 MHz in increments 

of 5 MHz. 

The values of the gas parameters and transport coefficients 

which are calculated in this fashion are identical to the values used by 

Gornall et. al.   Since these values gave an excellent theoretical fit to 

the experimental spontaneous light scattering spectra for the same 

gas mixtures as investigated in this experiment, we may assume that 

the values are quite accurate, particularly for the mixtures with 

low He concentration.    For the mixtures with Helium concentrations 

above 50%, the accuracy of the calculated values may be somewhat 

diminished due to the fact that the non-ideal gas corrections and the 
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effects of He-heavy gas interactions are becoming more important. 

Both of these effects are included in the calculations in an empirical 

fashion as discussed in the preceding sections. 

2.    He-SF, Mixture 

Before beginning work on the He-SF, mixtures, measurements 

were made of the Brillouin threshold for pure SF, as a function oi 

gas pressure.    The reasons for doing this were to determine the 

minimum pressure of SF, in which stimulated Brillouin scattering 

could be observed and, as a by-product, to test that the Brillouin 

threshold was inversely proportional to the square of the gas density 

as predicted by Equation (2. 62).    It was important to know the 

minimum SF, pressure at which the available laser power could 

produce stimulated scattering because, as we have seen, the 

possibility of observing concentration scattering is greatest at low 

pressure.    The results of this measurement are shown in Fig.  (4. 2). 

The minimum SF, pressure in which stimulated Brillouin scattering 

(SBS) was observed was 4 atm.    In the range of pressure from 4 atm. 

to 14 atm. the experimental value of the SBS threshold power agrees 

very well with the theoretical prediction. 

It was decided on the basis of these results and from gain 

calculations, that a partial pressure of 5 atm of SF   would be 

appropriate for the investigation of stimulated scattering from 

He-SF/ mixtures.    The He concentration of the mixture was increased 

by adding He.    Thus, as the He concentration increased, the total 
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pressure also increased.    The gain coefficients in the decoupled mode 

approximation g_,  g ,  g_ were calculated as functions of He 

concentration.    The results of this calculation are shown in Fig.   (4.3). 

The main features shown in this figure are the following:   the Brillouin 

gain decreases steadily with increasing He concentration up to about 

85l/u   He concentration (total pressure at. 33 atm) and rises sharply for 

higher concentrations (higher total pressure).    The reason for this 

behavior is that,  as the He is added,  the sound wave damping constant: 

r given by Enuation (2. 78) increases so the Brillouin gain Equation 
2 

(2. 62) decreases.    However gR also has a p    dependence which at high 

pressures eventually dominates the increase in Fand so the value of 

go increases.    The thermal Rayleigh gain gT decreases steadily as c' 

increases.    The concentration gain g    increases and,  for the pressures 

which were chosen for the experiment,  g   becomes larger than gR at 

a concentration of about 90%.    Thus,  considering the decoupled gain 

coefficients as a first approximation to the problem,  one expects to 

see a transition from Brillouin scattering to concentration scattering 

at about 90%  concentration. 

The gain constant gR  T(tj) for the complete coupled mode solution 

given by Equation (2.73) was calculated for frequency shifts from 0 to 

1200 Mhz in intervals of 5 MHz.    The result of this calculation is 

presented in Fig.   ^4. 4) which shows gB  T(u) as a function of the 

frequency shift w.    The gain for pure SF, (c' = 0) has its maximum 

at the Brillouin shift 
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Fig.  4. 3    Gain Coefficients Versus Helium Concentration for He-SF, 
(5 atm) Mixture 
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Un    =   kv     ä   400 MHz 
13 S 

As the concentration c' increases,  the gain at the Brillouin shift 

decreases and the frequency shift at which the peak of g_   _ occurs 

increases as predicted by the theory.    Also as the concentration 

increases,  the height of the local maximum in gR   T{UJ) at the frequency 

shift characteristic of stimulated scattering from the concentration 

mode 

u)     at  Dk2   OK  100 MHz c 

increases.    At a concentration of about 60% , the gain at u   becomes 

larger than the gain at u—.   Thus for concentrations greater than 

60% the observed stimulated scattering is from the concentration 

mode. 

The fiequency shifts for the various modes as functions of the 

He concentration are presented graphically in Fig. (4. 5).    The 

frequency shift for the decoupled Brillouin mode is kv    as indicated s 

by Equation (2. 61).    This result is due to the fact,  discussed earlier, 

that,  for the gases under consideration, the low frequency, long 

wavelength approximation to the sound wave dispersion relation is 

valid.    In this approximation,  sound propagates at the adiabatic 

velocity.    The frequency shift which would be predicted if the sound 

velocity were the isothermal velocity vT is also shown in Fig.   (4. 5). 

The frequency shift predicted from the coupled mode solution is shown 

in Fig.  (4. 5).    This shift indicates that as the He concentration is 

increased, the sound velocity tends toward the isothermal value. 
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Fig.   4. 5     Frequency Shift Versus Helium Concentration for Stimulated 
Scattering from the Various Modes of the He-SF/  (5 atm) 
Mixture 
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The reason for this behavior is that the light He gas diffuses so 'ast 

that it established isothermal conditions during the period of the sound 

wave which is determined by the heavy component and comparatively 

low.    The frequent collisions of the He atoms transports sufficient 

energy to establish thermal equilibrium during the period of the 

fluctuations.    The sound wave is heavily damped as discussed earlier, 

because the heavy and light atoms relax toward thermal equilibrium 

with different rates.    There is therefore more dissipation of energy 

during a cycle of the pressure oscillations.    This has also been 
9 

observed by Gornall et. al.    . 

The frequency shift associated with the uncoupled thermal 

diffusion mode (u = x^ ) an<i v ith the uncoupled concentration mode 

(u) = Dk ) are also shown in Fig.  (4. 5).    The solution of the coupled 

mode equations predicts an abrupt change at a concentration of 60% 

in the value of the frequency shift at which the absolute maximum of 

the gain   gR   _   occurs.     This change from large to small shift indicate: 

the transition from Brillouin to concentration scattering. 

The experimental results for the He-SF, mixture     are 

presented in Fig.   (4.6).    The decrease in the gain as the He 

concentration increased was experimentally observed as an increase 

in the threshold for stimulated oscillation.    For He concentration 

below 60%,  the observed frequency shift is in very good agreement 

with the theoretical value.    The theoretical value shown in this 

figure is the frequency shift at which g«   T is maximum.    For Helium 

partial pressure above 8 atm the value of the observed frequency shift 



-154- 

( UJD) i^ms ^ouanbajj 

Fig.  4. 6    Experimental Results for the He-SF^ (5 atm) Mixture 
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decreases rapidly toward the small values which are characteristic 

of the concentration mode.    The observed frequency shift makes a 

smooth transition from large to small values rather than the abrupt 

change predicted by the theoretical calculations.    The probable 

explanation for this discrepancy is that the scattering from the 

concentration diffusion mode becomes transient as the pressure 

increases.    The steady state solution Equation (2. 53) are valid only 

if the laser pulse duration t— is long compared to the product of the 

steady state gain and the material relaxation time.    The condition 

then which must be satisfied for the steady state concentration 

scattering is 

4g|EL|22            40 

tp >   5     —   2 

When this condition is not satisfied,  the Stokes wave amplification is 

given by a complete transient solution of the coupled Equations 

(2. 49-2. 52) and depends on the laser pulse duration as well as on the 

distance z.    The transient solution of the coupled equations is quite 

difficult and has not been performed.    In general,  however,  the 

transient gain is less than the steady state value.    Since D "- -sj,  5 
^    Dk 

increases as the pressure and He concentration increases.    The 

laser pulse duration indicated by Fig.  (3. 2b) is tp ss 5 x 10      sec., 

assuming that the pulse envelope is smooth.    Then,  for pressure 

about 10 atm,  5 ä 5 x 10       sec which clearly allows the validity 
Dk                                                                                   l 

of the steady state solution.    However,  for P ~ 50 atm,    5 — 
Dk 

2. 5 x 10   ' sec.    Thus we are approaching the region in which the 
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steady state solution may not be accurate.    If we consider the gain 

versus frequency shift results shown in Fig.   (4.4) we see that 

qualitatively this explanation predicts the observed behavior.    A 

transient response in the concentration mode reduces the gain at 

2 
w = Dk  .    Since the gain at   u ä kv     continues to decrease as the He 

concentration increases,  the   gR   T(u))   should pass through a transition 

re gion where   g_   rr   i& maximum for ^ decreasing smoothly from the 
Be X 

2 
value kv    to the value Dk  .    This is exactly the behavior which is s ' 

observed experimentally. 

When a partial pressure of 10 atm SF, is used, the observed 

frequency continues to increase as the He concentration increases in 

agreement with theoretical predictions.    The observed shift remains 

characteristic of the Brillouin scattering for the mixture up to a 

Helium concentration of 80% as shown in Fig. (4. 6). 

3.    He-Xe Mixture 

In order to further verify the stimulated scattering from the 

concentration mode,  it was desirable to observe the effect in a 

mixture of monatomic gases.    This removed some of the uncertainties 

in the calculations of the transport properties which occur with a 

polyatomic molecule. 

The Brillouin gain in Xe is about half the gain for SF, at the 

same pressure.    Consequently a. higher partial pressure of Xe was 

required to observe stimulated Brillouin scattering.    On the basis of 

preliminary calculations,  a Xe partial pressure of 8 atm was chosen. 
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The main features of the He-Xe scattering were identical to 

those of He-SF/ scattering.    However, additional experimental 

difficulties were encountered. 

It was observed that the electrical breakdown threshold in Xe 

wa 3 approximately equal to the Brillouin threshold.    The breakdown 

11     W 
threshold was measured to be   '-,- 10       7.    The actual value of this 

cm 
number is of little significance unless the transverse mode structure, 

and thus the focusing characteristics of the beam,  are specified. 

However, this observed threshold is in agreement with the results 

of an earlier study of optically induced gas breakdown in the Noble 

11 gases   . 

In order to make accurate measurements, it was necessary to 

avoid gas breakdown since the breakdown may cause thermal Brillouin 

12 
or Rayleigh scattering to occur     which would confuse the observations. 

It was discovered that by focusing the laser into the g^j mixture with 

a lens of 40 cm focal length, the gas breakdown did not occur. 

The values of the decoupled gain coefficients gB,  g  ,  gT are 

shown in Fig.  (4. 7).    The solutions for the coupled gain coefficient 

g     _ as a function of frequency are presented in Fig.  (4.8) and the 

frequency shifts for the various modes are shown in Fig.   (4. 9).    Finally, 

the experimental values for the frequency shift as a function of He con- 

centration are shown in Fig.   (4. 10) along with the theoretical prediction. 

As was the case for the He-SF, mixture, the theory predicts an 

abrupt change from large to small shift at 60% concentration.    This 

is the point at which the observed shift begins to decrease rapidly. 
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Fig.   4. 7    Gain Coefficients Versus Helium Concentration for He-Xe 
(8 atm) Mixture 
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The statements made about the transient response of the concentration 

scattering for the He-SF, mixture apply equally for the He-Xe 

mixture. 

E.     Summary and Conclusions 

In this work, it has been shown that the dynamical equations of 

the binary mixture predict the existence of three normal modes of the 

system.    These modes are the sound wave and thermal and concentration 

diffusion.    In mixtures composed of roughly equal amounts of both 

gases, these normal modes are strongly coupled and the effect of this 

coupling is to increase the damping constants and decrease the sound 

velocity of the mixture.    These normal modes are each coupled to 

applied electromagnetic fields through the dependence of the dielectric 

constant on the thermodynamic parameters which characterize the 

mixture.    This coupling allows the electromagnetic fields to drive 

coherent fluctuations in these thermodynamic parameters which in 

turn react on the electromagnetic fields through the modulation of the 

index of refraction and can lead to stimulated scattering.    The 

resultant gain for the scattered wave has been calculated and it shows 

that in mixtures at relatively low pressure in which the different 

molecules have a large difference in polarizibility and in mass,  it is 

possible to observe stimulated scattering from the concentration 

fluctuations.    The stimulated scattering has been observed in two 

mixtures and the results are in good agreement with the theory. 

Concentration scattering should be observable in certain other gas 
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mixtures,  for example He-CF-,  He C2F, and possibly He-Ar,  how- 

ever it is doubtful that any additional information would be obtained. 

In less select gas mixtures and all liquid mixtures the concentration 

gain will be less than the Brillouin gain,  and thus stimulated 

concentration scattering cannot be observed. 

In this experiment,  a new technique was introduced which 

resulted in substantial reduction of the threshold for stimulated 

scattering.    This technique should be applicable in the observation 

of low gain scattering processes when only limited laser power is 

available.    We believe that this is the first unambiguous demonstration 

of stimulated concentration scattering,   in which the frequency of the 

scattered light is systematically investigated as a function of 

concentration. 

Earlier investigations of stimulated light scattering from 

binary mixtures have been made and provided the impetus for the 

present investigation.    The first experiment which claimed to have 

13 observed stimulated concentration scattering     was performed in a 

liquid mixture of n-hexane (58% weight concentration) and nitrobenzene 

(42%).    However,  the ratio of the gain constants in the decoupled mode 
gc -5 approximation is   g—   ä   1.25X10       which throws considerable 

doubt on the interpretation of this experiment.    Near the critical 

point in a binary mixture where   "ST  "* 0|  ^e concentration gain could 

become large.    However,  the diffusion constant D approaches zero 

at the same time.    Thus the correlation time for concentration 

fluctuations becomes large   *- 10      sec.    The steady state analysis 
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breaks down for solid state laser pulses, and even with gas laser 

beams it would be difficult to maintain the required coherence for such 

long times.    A transient analysis must be made and the experimental 

difficulties would be further enhanced by the large spontaneous 

critical opalescence,  although amplification of this spontaneous 

emission at high intensities may well be detectable. 

14 The second experiment     was done with a Xe and He mixture 

with He concentration   c' = 0. 9.    At this concentration,  the Brillouin 

shift should be 0. 0479 cm     rather than 0. 055 cm     as reported.    The 
gc gc gain ratio should be   —    =   21   in contrast to the estimate of  —   =   0.1 
SB gB 

as estimated in Ref.  14.    The observed concentration shift 
2 

0. 033-0. 042 cm"   agrees with the value   Av     =  P-*- =   0. 032 cm" . 

At a higher total pressure,  the stimulated Brillouin scattering should 

dominate the concentration scattering as suggested in Ref.  14, however 

this should not occur at a total pressure as low as 4 atm.    Also at such 

low pressure the condition for the validity of the hydrodynamic equations 

y > 3   is not satisfied and the experimental technique is subject to 

error,  since positive effects were only observed in the presence of 

gas breakdown.    Sparks lead to low frequency scattering even in pure 

noble gases, presumably caused by thermal Rayleigh scattering. 
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